BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 25848225)

  • 1. Modeling, molecular dynamics, and docking assessment of transcription factor rho: a potential drug target in Brucella melitensis 16M.
    Pradeepkiran JA; Kumar KK; Kumar YN; Bhaskar M
    Drug Des Devel Ther; 2015; 9():1897-912. PubMed ID: 25848225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete genome-wide screening and subtractive genomic approach revealed new virulence factors, potential drug targets against bio-war pathogen Brucella melitensis 16M.
    Pradeepkiran JA; Sainath SB; Kumar KK; Bhaskar M
    Drug Des Devel Ther; 2015; 9():1691-706. PubMed ID: 25834405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Phosphoribosyl-AMP cyclohydrolase, as drug target and its inhibitors in Brucella melitensis bv. 1 16M using metabolic pathway analysis.
    Gupta M; Prasad Y; Sharma SK; Jain CK
    J Biomol Struct Dyn; 2017 Feb; 35(2):287-299. PubMed ID: 26725317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bacteriophage Capsid Protein Is an Inhibitor of a Conserved Transcription Terminator of Various Bacterial Pathogens.
    Ghosh G; Reddy J; Sambhare S; Sen R
    J Bacteriol; 2018 Jan; 200(1):. PubMed ID: 29038252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling, molecular docking, probing catalytic binding mode of acetyl-CoA malate synthase G in
    Adi PJ; Yellapu NK; Matcha B
    Biochem Biophys Rep; 2016 Dec; 8():192-199. PubMed ID: 28955956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multicopper oxidase contributes to the copper tolerance of Brucella melitensis 16M.
    Wu T; Wang S; Wang Z; Peng X; Lu Y; Wu Q
    FEMS Microbiol Lett; 2015 Jun; 362(12):fnv078. PubMed ID: 25956175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacoinformatics exploration of polyphenol oxidases leading to novel inhibitors by virtual screening and molecular dynamic simulation study.
    Hassan M; Abbas Q; Ashraf Z; Moustafa AA; Seo SY
    Comput Biol Chem; 2017 Jun; 68():131-142. PubMed ID: 28340400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico high-throughput virtual screening and molecular dynamics simulation study to identify inhibitor for AdeABC efflux pump of Acinetobacter baumannii.
    Verma P; Tiwari M; Tiwari V
    J Biomol Struct Dyn; 2018 Apr; 36(5):1182-1194. PubMed ID: 28393677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing of potential inhibitors against Staphylococcus aureus sortase A: Combined analogue and structure based approach with in vitro validation.
    Raj KK; Ganesh Kumar V; Leela Madhuri C; Mathi P; Durga Lakshmi R; Ravi M; Sri Ramudu B; Venkata Rao SV; Ramachandran D
    J Mol Graph Model; 2015 Jul; 60():89-97. PubMed ID: 26119984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Docking and
    Muhammad I; Niaz S; Gul E Nayab ; Hussain A; Ahmad S; Rahman N; Khan H; Ali A
    Curr Comput Aided Drug Des; 2021; 17(7):946-956. PubMed ID: 32532195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carboxylic acid derivatives display potential selectivity for human histone deacetylase 6: Structure-based virtual screening, molecular docking and dynamics simulation studies.
    Uba AI; Yelekçi K
    Comput Biol Chem; 2018 Aug; 75():131-142. PubMed ID: 29859380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Para-(benzoyl)-phenylalanine as a potential inhibitor against LpxC of Leptospira spp.: homology modeling, docking, and molecular dynamics study.
    Pradhan D; Priyadarshini V; Munikumar M; Swargam S; Umamaheswari A; Bitla A
    J Biomol Struct Dyn; 2014; 32(2):171-85. PubMed ID: 23383626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular screening for rifampicin and fluoroquinolone resistance in a clinical population of Brucella melitensis.
    Valdezate S; Navarro A; Medina-Pascual MJ; Carrasco G; Saéz-Nieto JA
    J Antimicrob Chemother; 2010 Jan; 65(1):51-3. PubMed ID: 19861338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative proteome analysis of laboratory grown Brucella abortus 2308 and Brucella melitensis 16M.
    Eschenbrenner M; Horn TA; Wagner MA; Mujer CV; Miller-Scandle TL; DelVecchio VG
    J Proteome Res; 2006 Jul; 5(7):1731-40. PubMed ID: 16823981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape-based virtual screening, docking, and molecular dynamics simulations to identify Mtb-ASADH inhibitors.
    Kumar R; Garg P; Bharatam PV
    J Biomol Struct Dyn; 2015; 33(5):1082-93. PubMed ID: 24875451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Brucella melitensis 16M genes required for bacterial survival in the caprine host.
    Zygmunt MS; Hagius SD; Walker JV; Elzer PH
    Microbes Infect; 2006; 8(14-15):2849-54. PubMed ID: 17090391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brucella melitensis Methionyl-tRNA-Synthetase (MetRS), a Potential Drug Target for Brucellosis.
    Ojo KK; Ranade RM; Zhang Z; Dranow DM; Myers JB; Choi R; Nakazawa Hewitt S; Edwards TE; Davies DR; Lorimer D; Boyle SM; Barrett LK; Buckner FS; Fan E; Van Voorhis WC
    PLoS One; 2016; 11(8):e0160350. PubMed ID: 27500735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying potential natural inhibitors of Brucella melitensis Methionyl-tRNA synthetase through an in-silico approach.
    Rowaiye AB; Ogugua AJ; Ibeanu G; Bur D; Asala MT; Ogbeide OB; Abraham EO; Usman HB
    PLoS Negl Trop Dis; 2022 Mar; 16(3):e0009799. PubMed ID: 35312681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the virulence of a Brucella melitensis hemagglutinin gene in the caprine model.
    Perry QL; Hagius SD; Walker JV; Elzer PH
    Vaccine; 2010 Oct; 28 Suppl 5():F6-11. PubMed ID: 20362205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular basis for the mode of action of bicyclomycin.
    Kohn H; Widger W
    Curr Drug Targets Infect Disord; 2005 Sep; 5(3):273-95. PubMed ID: 16181146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.