These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
443 related articles for article (PubMed ID: 25848642)
1. A facile synthesis of fluorescent silver nanoclusters with human ferritin as a synthetic and interfacing ligand. Lee IH; Ahn B; Lee JM; Lee CS; Jung Y Analyst; 2015 May; 140(10):3543-50. PubMed ID: 25848642 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. Yuan X; Luo Z; Zhang Q; Zhang X; Zheng Y; Lee JY; Xie J ACS Nano; 2011 Nov; 5(11):8800-8. PubMed ID: 22010797 [TBL] [Abstract][Full Text] [Related]
3. Fenton's reagent-tuned DNA-templated fluorescent silver nanoclusters as a versatile fluorescence probe and logic device. Zhang LP; Zhang XX; Hu B; Shen LM; Chen XW; Wang JH Analyst; 2012 Nov; 137(21):4974-80. PubMed ID: 22968007 [TBL] [Abstract][Full Text] [Related]
4. Periodic fluorescent silver clusters assembled by rolling circle amplification and their sensor application. Ye T; Chen J; Liu Y; Ji X; Zhou G; He Z ACS Appl Mater Interfaces; 2014 Sep; 6(18):16091-6. PubMed ID: 25116051 [TBL] [Abstract][Full Text] [Related]
5. Highly selective detection of bacterial alarmone ppGpp with an off-on fluorescent probe of copper-mediated silver nanoclusters. Zhang P; Wang Y; Chang Y; Xiong ZH; Huang CZ Biosens Bioelectron; 2013 Nov; 49():433-7. PubMed ID: 23810912 [TBL] [Abstract][Full Text] [Related]
6. Characterization and application to the detection of single-stranded DNA binding protein of fluorescent DNA-templated copper/silver nanoclusters. Lan GY; Chen WY; Chang HT Analyst; 2011 Sep; 136(18):3623-8. PubMed ID: 21776493 [TBL] [Abstract][Full Text] [Related]
7. Fluorescent silver nanoclusters for user-friendly detection of Cu2+ on a paper platform. Liu X; Zong C; Lu L Analyst; 2012 May; 137(10):2406-14. PubMed ID: 22489282 [TBL] [Abstract][Full Text] [Related]
8. Upconversion emission of fluorescent silver nanoclusters and in situ selective DNA biosensing. Cui Q; Shao Y; Ma K; Xu S; Wu F; Liu G Analyst; 2012 May; 137(10):2362-6. PubMed ID: 22479694 [TBL] [Abstract][Full Text] [Related]
9. Cytosine-rich ssDNA-templated fluorescent silver and copper/silver nanoclusters: optical properties and sensitive detection for mercury(II). Mao A; Wei C Mikrochim Acta; 2019 Jul; 186(8):541. PubMed ID: 31317329 [TBL] [Abstract][Full Text] [Related]
10. Facile synthesis of near infrared fluorescent trypsin-stabilized Ag nanoclusters with tunable emission for 1,4-dihydronicotinamide adenine dinucleotide and ethanol sensing. Liu S; Wang H; Cheng Z; Liu H Anal Chim Acta; 2015 Jul; 886():151-6. PubMed ID: 26320647 [TBL] [Abstract][Full Text] [Related]
11. Cu(2+) modulated silver nanoclusters as an on-off-on fluorescence probe for the selective detection of L-histidine. Zheng X; Yao T; Zhu Y; Shi S Biosens Bioelectron; 2015 Apr; 66():103-8. PubMed ID: 25460889 [TBL] [Abstract][Full Text] [Related]
12. Facile Synthesis of Enhanced Fluorescent Gold-Silver Bimetallic Nanocluster and Its Application for Highly Sensitive Detection of Inorganic Pyrophosphatase Activity. Zhou Q; Lin Y; Xu M; Gao Z; Yang H; Tang D Anal Chem; 2016 Sep; 88(17):8886-92. PubMed ID: 27476555 [TBL] [Abstract][Full Text] [Related]
13. Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Chen WY; Lan GY; Chang HT Anal Chem; 2011 Dec; 83(24):9450-5. PubMed ID: 22029551 [TBL] [Abstract][Full Text] [Related]
14. A novel switchable fluorescent sensor for facile and highly sensitive detection of alkaline phosphatase activity in a water environment with gold/silver nanoclusters. Wang X; Liu Z; Zhao W; Sun J; Qian B; Wang X; Zeng H; Du D; Duan J Anal Bioanal Chem; 2019 Feb; 411(5):1009-1017. PubMed ID: 30552495 [TBL] [Abstract][Full Text] [Related]
15. The sensitive detection of ATP and ADA based on turn-on fluorescent copper/silver nanoclusters. Zhang B; Wei C Anal Bioanal Chem; 2020 Apr; 412(11):2529-2536. PubMed ID: 32043202 [TBL] [Abstract][Full Text] [Related]
16. "Turn-Off-On" Fluorescence Switching of Ascorbic Acid-Reductive Silver Nanoclusters: a Sensor for Ascorbic Acid and Arginine in Biological Fluids. Li N; He Y; Ge Y; Song G J Fluoresc; 2017 Jan; 27(1):293-302. PubMed ID: 27796631 [TBL] [Abstract][Full Text] [Related]
17. Silver ion incorporation and nanoparticle formation inside the cavity of Pyrococcus furiosus ferritin: structural and size-distribution analyses. Kasyutich O; Ilari A; Fiorillo A; Tatchev D; Hoell A; Ceci P J Am Chem Soc; 2010 Mar; 132(10):3621-7. PubMed ID: 20170158 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence Sensors for the Detection of L-Histidine Based on Silver Nanoclusters Modulated by Copper Ions. Li Y; Li M; Hu L; Zhang B Molecules; 2024 May; 29(10):. PubMed ID: 38792029 [TBL] [Abstract][Full Text] [Related]
19. Cationic-Polyelectrolyte-Modified Fluorescent DNA-Silver Nanoclusters with Enhanced Emission and Higher Stability for Rapid Bioimaging. Lyu D; Li J; Wang X; Guo W; Wang E Anal Chem; 2019 Feb; 91(3):2050-2057. PubMed ID: 30592204 [TBL] [Abstract][Full Text] [Related]
20. Photoemission mechanism of water-soluble silver nanoclusters: ligand-to-metal-metal charge transfer vs strong coupling between surface plasmon and emitters. Chen Y; Yang T; Pan H; Yuan Y; Chen L; Liu M; Zhang K; Zhang S; Wu P; Xu J J Am Chem Soc; 2014 Feb; 136(5):1686-9. PubMed ID: 24437963 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]