BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 25848806)

  • 1. Regeneration of Light-Harvesting Complexes via Dynamic Replacement of Photodegraded Chromophores.
    Zhang H; Pan J; Ghimire S; Bork MA; Riccitelli MM; McMillin DR; Choi JH
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7833-7. PubMed ID: 25848806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA oligonucleotide templated nanohybrids using electronic type sorted carbon nanotubes for light harvesting.
    Zhang H; Baker BA; Cha TG; Sauffer MD; Wu Y; Hinkson N; Bork MA; McShane CM; Choi KS; McMillin DR; Choi JH
    Adv Mater; 2012 Oct; 24(40):5447-51. PubMed ID: 22887359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-induced electron transfer through DNA-decorated single-walled carbon nanotubes.
    Li Y; Kaneko T; Hirotsu Y; Hatakeyama R
    Small; 2010 Jan; 6(1):27-30. PubMed ID: 19943258
    [No Abstract]   [Full Text] [Related]  

  • 4. Self-assembled nanoscale DNA-porphyrin complex for artificial light harvesting.
    Woller JG; Hannestad JK; Albinsson B
    J Am Chem Soc; 2013 Feb; 135(7):2759-68. PubMed ID: 23350631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diameter-sorted SWCNT-porphyrin and SWCNT-phthalocyanine conjugates for light-energy harvesting.
    Sandanayaka AS; Subbaiyan NK; Das SK; Chitta R; Maligaspe E; Hasobe T; Ito O; D'Souza F
    Chemphyschem; 2011 Aug; 12(12):2266-73. PubMed ID: 21751336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bionano donor-acceptor hybrids of porphyrin, ssDNA, and semiconductive single-wall carbon nanotubes for electron transfer via porphyrin excitation.
    D'Souza F; Das SK; Zandler ME; Sandanayaka AS; Ito O
    J Am Chem Soc; 2011 Dec; 133(49):19922-30. PubMed ID: 22088093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.
    Kumar CV; Duff MR
    Photochem Photobiol Sci; 2008 Dec; 7(12):1522-30. PubMed ID: 19037505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-activated nanotube-porphyrin conjugates as effective antiviral agents.
    Banerjee I; Douaisi MP; Mondal D; Kane RS
    Nanotechnology; 2012 Mar; 23(10):105101. PubMed ID: 22361811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved performance of GaN-based vertical light emitting diodes with conducting and transparent single-walled carbon nanotube networks.
    Kim SJ; Kim KH; Kim TG
    Opt Express; 2013 Apr; 21(7):8062-8. PubMed ID: 23571896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron transport behavior of individual zinc oxide coated single-walled carbon nanotubes.
    Lin CC; Chu BT; Tobias G; Sahakalkan S; Roth S; Green ML; Chen SY
    Nanotechnology; 2009 Mar; 20(10):105703. PubMed ID: 19417531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-Harvesting Systems Based on Organic Nanocrystals To Mimic Chlorosomes.
    Chen PZ; Weng YX; Niu LY; Chen YZ; Wu LZ; Tung CH; Yang QZ
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2759-63. PubMed ID: 26799735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonant transport through a carbon nanotube junction exposed to an ac field.
    Shafranjuk SE
    J Phys Condens Matter; 2011 Dec; 23(49):495304. PubMed ID: 22109843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A liquid-Ga-filled carbon nanotube: a miniaturized temperature sensor and electrical switch.
    Dorozhkin PS; Tovstonog SV; Golberg D; Zhan J; Ishikawa Y; Shiozawa M; Nakanishi H; Nakata K; Bando Y
    Small; 2005 Nov; 1(11):1088-93. PubMed ID: 17193401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially resolved electrostatic potential and photocurrent generation in carbon nanotube array devices.
    Engel M; Steiner M; Sundaram RS; Krupke R; Green AA; Hersam MC; Avouris P
    ACS Nano; 2012 Aug; 6(8):7303-10. PubMed ID: 22769018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoactivated antimicrobial activity of carbon nanotube-porphyrin conjugates.
    Banerjee I; Mondal D; Martin J; Kane RS
    Langmuir; 2010 Nov; 26(22):17369-74. PubMed ID: 20931992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supersensitive, ultrafast, and broad-band light-harvesting scheme employing carbon nanotube/TiO2 core-shell nanowire geometry.
    Hsu CY; Lien DH; Lu SY; Chen CY; Kang CF; Chueh YL; Hsu WK; He JH
    ACS Nano; 2012 Aug; 6(8):6687-92. PubMed ID: 22895153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled precipitation of solubilized carbon nanotubes by delamination of DNA.
    Chen RJ; Zhang Y
    J Phys Chem B; 2006 Jan; 110(1):54-7. PubMed ID: 16471498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of nanohybrids of porphyrins with metallic and semiconducting carbon nanotubes by EPR and optical spectroscopy.
    Cambré S; Wenseleers W; Culin J; Van Doorslaer S; Fonseca A; Nagy JB; Goovaerts E
    Chemphyschem; 2008 Sep; 9(13):1930-41. PubMed ID: 18712730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Dimensional Multichromophor Arrays Based on DNA: From Self-Assembly to Light-Harvesting.
    Ensslen P; Wagenknecht HA
    Acc Chem Res; 2015 Oct; 48(10):2724-33. PubMed ID: 26411920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for carbon nanotube-DNA hybrid using one-dimensional density of states.
    Malysheva O; Tang T; Schiavone P
    J Colloid Interface Sci; 2012 Aug; 380(1):25-33. PubMed ID: 22677440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.