BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 25848811)

  • 1. Transition States and transition state analogue interactions with enzymes.
    Schramm VL
    Acc Chem Res; 2015 Apr; 48(4):1032-9. PubMed ID: 25848811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic transition states and dynamic motion in barrier crossing.
    Schwartz SD; Schramm VL
    Nat Chem Biol; 2009 Aug; 5(8):551-8. PubMed ID: 19620996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic transition states: thermodynamics, dynamics and analogue design.
    Schramm VL
    Arch Biochem Biophys; 2005 Jan; 433(1):13-26. PubMed ID: 15581562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotope-specific and amino acid-specific heavy atom substitutions alter barrier crossing in human purine nucleoside phosphorylase.
    Suarez J; Schramm VL
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11247-51. PubMed ID: 26305965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic transition states and transition state analogues.
    Schramm VL
    Curr Opin Struct Biol; 2005 Dec; 15(6):604-13. PubMed ID: 16274984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic transition states, transition-state analogs, dynamics, thermodynamics, and lifetimes.
    Schramm VL
    Annu Rev Biochem; 2011; 80():703-32. PubMed ID: 21675920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of dynamics in enzyme catalysis: substantial versus semantic controversies.
    Kohen A
    Acc Chem Res; 2015 Feb; 48(2):466-73. PubMed ID: 25539442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoting Vibrations and the Function of Enzymes. Emerging Theoretical and Experimental Convergence.
    Schramm VL; Schwartz SD
    Biochemistry; 2018 Jun; 57(24):3299-3308. PubMed ID: 29608286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamical nature of enzymatic catalysis.
    Callender R; Dyer RB
    Acc Chem Res; 2015 Feb; 48(2):407-13. PubMed ID: 25539144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme dynamics from NMR spectroscopy.
    Palmer AG
    Acc Chem Res; 2015 Feb; 48(2):457-65. PubMed ID: 25574774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy enzymes--experimental and computational insights in enzyme dynamics.
    Swiderek K; Ruiz-Pernía JJ; Moliner V; Tuñón I
    Curr Opin Chem Biol; 2014 Aug; 21():11-8. PubMed ID: 24709164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse enzyme isotope effects in human purine nucleoside phosphorylase with heavy asparagine labels.
    Harijan RK; Zoi I; Antoniou D; Schwartz SD; Schramm VL
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):E6209-E6216. PubMed ID: 29915028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perspectives on electrostatics and conformational motions in enzyme catalysis.
    Hanoian P; Liu CT; Hammes-Schiffer S; Benkovic S
    Acc Chem Res; 2015 Feb; 48(2):482-9. PubMed ID: 25565178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for ligand binding to an enzyme by a conformational selection pathway.
    Kovermann M; Grundström C; Sauer-Eriksson AE; Sauer UH; Wolf-Watz M
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6298-6303. PubMed ID: 28559350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased Transition-State Analogue Affinity in Isotopically Heavy MTAN with Increased Catalysis.
    Brown M; Schramm VL
    Biochemistry; 2023 Oct; 62(20):2928-2933. PubMed ID: 37788145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic transition states and transition state analog design.
    Schramm VL
    Annu Rev Biochem; 1998; 67():693-720. PubMed ID: 9759501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein conformational populations and functionally relevant substates.
    Ramanathan A; Savol A; Burger V; Chennubhotla CS; Agarwal PK
    Acc Chem Res; 2014 Jan; 47(1):149-56. PubMed ID: 23988159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.