BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25848820)

  • 1. Prognostic stromal gene signatures in breast cancer.
    Winslow S; Leandersson K; Edsjö A; Larsson C
    Breast Cancer Res; 2015 Feb; 17(1):23. PubMed ID: 25848820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neoplastic and stromal cells contribute to an extracellular matrix gene expression profile defining a breast cancer subtype likely to progress.
    Triulzi T; Casalini P; Sandri M; Ratti M; Carcangiu ML; Colombo MP; Balsari A; Ménard S; Orlandi R; Tagliabue E
    PLoS One; 2013; 8(2):e56761. PubMed ID: 23441215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. M1 Polarization Markers Are Upregulated in Basal-Like Breast Cancer Molecular Subtype and Associated With Favorable Patient Outcome.
    Hachim MY; Hachim IY; Talaat IM; Yakout NM; Hamoudi R
    Front Immunol; 2020; 11():560074. PubMed ID: 33304345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stromal genes add prognostic information to proliferation and histoclinical markers: a basis for the next generation of breast cancer gene signatures.
    Mefford D; Mefford J
    PLoS One; 2012; 7(6):e37646. PubMed ID: 22719844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fuzzy logic selection as a new reliable tool to identify molecular grade signatures in breast cancer--the INNODIAG study.
    Kempowsky-Hamon T; Valle C; Lacroix-Triki M; Hedjazi L; Trouilh L; Lamarre S; Labourdette D; Roger L; Mhamdi L; Dalenc F; Filleron T; Favre G; François JM; Le Lann MV; Anton-Leberre V
    BMC Med Genomics; 2015 Feb; 8():3. PubMed ID: 25888889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of the epithelial-specific transcriptome of normal and malignant human breast cells based on MPSS and array expression data.
    Grigoriadis A; Mackay A; Reis-Filho JS; Steele D; Iseli C; Stevenson BJ; Jongeneel CV; Valgeirsson H; Fenwick K; Iravani M; Leao M; Simpson AJ; Strausberg RL; Jat PS; Ashworth A; Neville AM; O'Hare MJ
    Breast Cancer Res; 2006; 8(5):R56. PubMed ID: 17014703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The stromal genome heterogeneity between breast and prostate tumors revealed by a comparative transcriptomic analysis.
    He K; Lv W; Zheng D; Cheng F; Zhou T; Ye S; Ban Q; Ying Q; Huang B; Chen L; Wu G; Liu D
    Oncotarget; 2015 Apr; 6(11):8687-97. PubMed ID: 25826086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. E2F4 regulatory program predicts patient survival prognosis in breast cancer.
    Khaleel SS; Andrews EH; Ung M; DiRenzo J; Cheng C
    Breast Cancer Res; 2014 Dec; 16(6):486. PubMed ID: 25440089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prognostic meta-signature of breast cancer developed by two-stage mixture modeling of microarray data.
    Shen R; Ghosh D; Chinnaiyan AM
    BMC Genomics; 2004 Dec; 5(1):94. PubMed ID: 15598354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prognostic gene expression signatures of breast cancer are lacking a sensible biological meaning.
    Manjang K; Tripathi S; Yli-Harja O; Dehmer M; Glazko G; Emmert-Streib F
    Sci Rep; 2021 Jan; 11(1):156. PubMed ID: 33420139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histological subtypes of mouse mammary tumors reveal conserved relationships to human cancers.
    Hollern DP; Swiatnicki MR; Andrechek ER
    PLoS Genet; 2018 Jan; 14(1):e1007135. PubMed ID: 29346386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical and multiple gene expression variables in survival analysis of breast cancer: analysis with the hypertabastic survival model.
    Tabatabai MA; Eby WM; Nimeh N; Li H; Singh KP
    BMC Med Genomics; 2012 Dec; 5():63. PubMed ID: 23241496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breast cancer prognosis risk estimation using integrated gene expression and clinical data.
    Saini A; Hou J; Zhou W
    Biomed Res Int; 2014; 2014():459203. PubMed ID: 24949450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding breast cancer tissue-stroma interactions using species-specific sequencing.
    Chivukula IV; Ramsköld D; Storvall H; Anderberg C; Jin S; Mamaeva V; Sahlgren C; Pietras K; Sandberg R; Lendahl U
    Breast Cancer Res; 2015 Aug; 17(1):109. PubMed ID: 26265142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression pattern, regulation, and clinical significance of TOX in breast cancer.
    Arora M; Kumari S; Singh J; Chopra A; Chauhan SS
    Cancer Immunol Immunother; 2021 Feb; 70(2):349-363. PubMed ID: 32757053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transitions from mono- to co- to tri-culture uniquely affect gene expression in breast cancer, stromal, and immune compartments.
    Regier MC; Maccoux LJ; Weinberger EM; Regehr KJ; Berry SM; Beebe DJ; Alarid ET
    Biomed Microdevices; 2016 Aug; 18(4):70. PubMed ID: 27432323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer.
    Ein-Dor L; Zuk O; Domany E
    Proc Natl Acad Sci U S A; 2006 Apr; 103(15):5923-8. PubMed ID: 16585533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breast cancer prognosis by combinatorial analysis of gene expression data.
    Alexe G; Alexe S; Axelrod DE; Bonates TO; Lozina II; Reiss M; Hammer PL
    Breast Cancer Res; 2006; 8(4):R41. PubMed ID: 16859500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can stroma reaction predict cancer lethality?
    Freeman MR; Li Q; Chung LW
    Clin Cancer Res; 2013 Sep; 19(18):4905-7. PubMed ID: 24009149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ONE-CLASS DETECTION OF CELL STATES IN TUMOR SUBTYPES.
    Sokolov A; Paull EO; Stuart JM
    Pac Symp Biocomput; 2016; 21():405-16. PubMed ID: 26776204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.