These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 25848822)

  • 1. A "Smart" ¹²⁸Xe NMR Biosensor for pH-Dependent Cell Labeling.
    Riggle BA; Wang Y; Dmochowski IJ
    J Am Chem Soc; 2015 Apr; 137(16):5542-8. PubMed ID: 25848822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryptophane Nanoscale Assemblies Expand
    Zemerov SD; Roose BW; Greenberg ML; Wang Y; Dmochowski IJ
    Anal Chem; 2018 Jun; 90(12):7730-7738. PubMed ID: 29782149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Expanded Palette of Xenon-129 NMR Biosensors.
    Wang Y; Dmochowski IJ
    Acc Chem Res; 2016 Oct; 49(10):2179-2187. PubMed ID: 27643815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cryptophane-based "turn-on"
    Riggle BA; Greenberg ML; Wang Y; Wissner RF; Zemerov SD; Petersson EJ; Dmochowski IJ
    Org Biomol Chem; 2017 Oct; 15(42):8883-8887. PubMed ID: 29058007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monomeric Cryptophane with Record-High Xe Affinity Gives Insights into Aggregation-Dependent Sensing.
    Zemerov SD; Lin Y; Dmochowski IJ
    Anal Chem; 2021 Jan; 93(3):1507-1514. PubMed ID: 33356164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing 129Xe NMR biosensors for matrix metalloproteinase detection.
    Wei Q; Seward GK; Hill PA; Patton B; Dimitrov IE; Kuzma NN; Dmochowski IJ
    J Am Chem Soc; 2006 Oct; 128(40):13274-83. PubMed ID: 17017809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilizing a water-soluble cryptophane with fast xenon exchange rates for picomolar sensitivity NMR measurements.
    Bai Y; Hill PA; Dmochowski IJ
    Anal Chem; 2012 Nov; 84(22):9935-41. PubMed ID: 23106513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryptophane xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase.
    Chambers JM; Hill PA; Aaron JA; Han Z; Christianson DW; Kuzma NN; Dmochowski IJ
    J Am Chem Soc; 2009 Jan; 131(2):563-9. PubMed ID: 19140795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A xenon-129 biosensor for monitoring MHC-peptide interactions.
    Schlundt A; Kilian W; Beyermann M; Sticht J; Günther S; Höpner S; Falk K; Roetzschke O; Mitschang L; Freund C
    Angew Chem Int Ed Engl; 2009; 48(23):4142-5. PubMed ID: 19408266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A doubly responsive probe for the detection of Cys4-tagged proteins.
    Kotera N; Dubost E; Milanole G; Doris E; Gravel E; Arhel N; Brotin T; Dutasta JP; Cochrane J; Mari E; Boutin C; Léonce E; Berthault P; Rousseau B
    Chem Commun (Camb); 2015 Jul; 51(57):11482-4. PubMed ID: 26091539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria Targeted and Intracellular Biothiol Triggered Hyperpolarized
    Zeng Q; Guo Q; Yuan Y; Yang Y; Zhang B; Ren L; Zhang X; Luo Q; Liu M; Bouchard LS; Zhou X
    Anal Chem; 2017 Feb; 89(4):2288-2295. PubMed ID: 28192930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Sensing with Hyperpolarized (129) Xe Using Switchable Chemical Exchange Relaxation Transfer.
    Zamberlan F; Lesbats C; Rogers NJ; Krupa JL; Pavlovskaya GE; Thomas NR; Faas HM; Meersmann T
    Chemphyschem; 2015 Aug; 16(11):2294-8. PubMed ID: 26083583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directly Functionalized Cucurbit[7]uril as a Biosensor for the Selective Detection of Protein Interactions by
    Truxal AE; Cao L; Isaacs L; Wemmer DE; Pines A
    Chemistry; 2019 Apr; 25(24):6108-6112. PubMed ID: 30868660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted Molecular Imaging of Cancer Cells Using MS2-Based (129)Xe NMR.
    Jeong K; Netirojjanakul C; Munch HK; Sun J; Finbloom JA; Wemmer DE; Pines A; Francis MB
    Bioconjug Chem; 2016 Aug; 27(8):1796-801. PubMed ID: 27454679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. (129)Xe NMR Relaxation-Based Macromolecular Sensing.
    Gomes MD; Dao P; Jeong K; Slack CC; Vassiliou CC; Finbloom JA; Francis MB; Wemmer DE; Pines A
    J Am Chem Soc; 2016 Aug; 138(31):9747-50. PubMed ID: 27472048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of enantiopure, trisubstituted cryptophane-A derivatives.
    Taratula O; Kim MP; Bai Y; Philbin JP; Riggle BA; Haase DN; Dmochowski IJ
    Org Lett; 2012 Jul; 14(14):3580-3. PubMed ID: 22783828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the effects of nonspecific xenon-protein interactions on (129)Xe chemical shifts in aqueous solution: further development of xenon as a biomolecular probe.
    Rubin SM; Spence MM; Pines A; Wemmer DE
    J Magn Reson; 2001 Sep; 152(1):79-86. PubMed ID: 11531366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous-wave saturation considerations for efficient xenon depolarization.
    Kunth M; Witte C; Schröder L
    NMR Biomed; 2015 Jun; 28(6):601-6. PubMed ID: 25900330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of a 129Xe-cryptophane biosensor complexed with human carbonic anhydrase II.
    Aaron JA; Chambers JM; Jude KM; Di Costanzo L; Dmochowski IJ; Christianson DW
    J Am Chem Soc; 2008 Jun; 130(22):6942-3. PubMed ID: 18461940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xenon-Protein Interactions: Characterization by X-Ray Crystallography and Hyper-CEST NMR.
    Roose BW; Zemerov SD; Dmochowski IJ
    Methods Enzymol; 2018; 602():249-272. PubMed ID: 29588032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.