BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 25848889)

  • 1. Phototropism in gametophytic shoots of the moss Physcomitrella patens.
    Bao L; Yamamoto KT; Fujita T
    Plant Signal Behav; 2015; 10(3):e1010900. PubMed ID: 25848889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Experimental System for Examining Phototropic Response of Gametophytic Shoots in the Moss Physcomitrella patens.
    Bao L; Yamamoto KT; Fujita T
    Methods Mol Biol; 2019; 1924():45-51. PubMed ID: 30694466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 2D to 3D growth transition in the moss Physcomitrella patens.
    Moody LA
    Curr Opin Plant Biol; 2019 Feb; 47():88-95. PubMed ID: 30399606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PAS-histidine kinases PHK1 and PHK2 exert oxygen-dependent dual and opposite effects on gametophore formation in the moss Physcomitrella patens.
    Ryo M; Yamashino T; Yamakawa H; Fujita Y; Aoki S
    Biochem Biophys Res Commun; 2018 Sep; 503(4):2861-2865. PubMed ID: 30100059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral events in developing gametophores of Physcomitrella patens and other moss species are driven by an unknown, universal direction-sensing mechanism.
    Zagórska-Marek B; Sokołowska K; Turzańska M
    Am J Bot; 2018 Dec; 105(12):1986-1994. PubMed ID: 30548234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots.
    Fujita T; Sakaguchi H; Hiwatashi Y; Wagstaff SJ; Ito M; Deguchi H; Sato T; Hasebe M
    Evol Dev; 2008; 10(2):176-86. PubMed ID: 18315811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eight types of stem cells in the life cycle of the moss Physcomitrella patens.
    Kofuji R; Hasebe M
    Curr Opin Plant Biol; 2014 Feb; 17():13-21. PubMed ID: 24507489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BLADE-ON-PETIOLE genes are not involved in the transition from protonema to gametophore in the moss Physcomitrella patens.
    Hata Y; Naramoto S; Kyozuka J
    J Plant Res; 2019 Sep; 132(5):617-627. PubMed ID: 31432295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mycorrhizae-like gene regulates stem cell and gametophore development in mosses.
    Wang S; Guan Y; Wang Q; Zhao J; Sun G; Hu X; Running MP; Sun H; Huang J
    Nat Commun; 2020 Apr; 11(1):2030. PubMed ID: 32332755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-specific transcriptomic analyses of three-dimensional shoot development in the moss Physcomitrella patens.
    Frank MH; Scanlon MJ
    Plant J; 2015 Aug; 83(4):743-51. PubMed ID: 26123849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens.
    Harrison CJ; Roeder AH; Meyerowitz EM; Langdale JA
    Curr Biol; 2009 Mar; 19(6):461-71. PubMed ID: 19303301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auxin-mediated developmental control in the moss Physcomitrella patens.
    Thelander M; Landberg K; Sundberg E
    J Exp Bot; 2018 Jan; 69(2):277-290. PubMed ID: 28992074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CELLULOSE SYNTHASE (CESA) gene essential for gametophore morphogenesis in the moss Physcomitrella patens.
    Goss CA; Brockmann DJ; Bushoven JT; Roberts AW
    Planta; 2012 Jun; 235(6):1355-67. PubMed ID: 22215046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-regulated PAS-containing histidine kinases delay gametophore formation in the moss Physcomitrella patens.
    Ryo M; Yamashino T; Nomoto Y; Goto Y; Ichinose M; Sato K; Sugita M; Aoki S
    J Exp Bot; 2018 Sep; 69(20):4839-4851. PubMed ID: 29992239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Physcomitrella Phytochrome Mutants via Phototropism and Polarotropism.
    Ermert AL; Stahl F; Gans T; Hughes J
    Methods Mol Biol; 2019; 2026():225-236. PubMed ID: 31317417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic evidence for the evolution of shoot meristem function in sporophyte-dominant land plants through concerted selection of ancestral gametophytic and sporophytic genetic programs.
    Frank MH; Scanlon MJ
    Mol Biol Evol; 2015 Feb; 32(2):355-67. PubMed ID: 25371433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hypergravity environment increases chloroplast size, photosynthesis, and plant growth in the moss Physcomitrella patens.
    Takemura K; Kamachi H; Kume A; Fujita T; Karahara I; Hanba YT
    J Plant Res; 2017 Jan; 130(1):181-192. PubMed ID: 27896464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two ANGUSTIFOLIA genes regulate gametophore and sporophyte development in Physcomitrella patens.
    Hashida Y; Takechi K; Abiru T; Yabe N; Nagase H; Hattori K; Takio S; Sato Y; Hasebe M; Tsukaya H; Takano H
    Plant J; 2020 Mar; 101(6):1318-1330. PubMed ID: 31674691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The phenotype of the CRINKLY4 deletion mutant of Physcomitrella patens suggests a broad role in developmental regulation in early land plants.
    Demko V; Ako E; Perroud PF; Quatrano R; Olsen OA
    Planta; 2016 Jul; 244(1):275-84. PubMed ID: 27100110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assays of Protonemal Growth Responses in Physcomitrella patens Under Blue- and Red-Light Stimuli.
    Miyazaki S; Nakajima M; Kawaide H
    Methods Mol Biol; 2019; 1924():35-43. PubMed ID: 30694465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.