These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 25849084)
1. Surface tension of supercooled water determined by using a counterpressure capillary rise method. Vinš V; Fransen M; Hykl J; Hrubý J J Phys Chem B; 2015 Apr; 119(17):5567-75. PubMed ID: 25849084 [TBL] [Abstract][Full Text] [Related]
2. Possible Anomaly in the Surface Tension of Supercooled Water: New Experiments at Extreme Supercooling down to -31.4 °C. Vinš V; Hykl J; Hrubý J; Blahut A; Celný D; Čenský M; Prokopová O J Phys Chem Lett; 2020 Jun; 11(11):4443-4447. PubMed ID: 32419467 [TBL] [Abstract][Full Text] [Related]
3. Surface Tension of Supercooled Water: No Inflection Point down to -25 °C. Hrubý J; Vinš V; Mareš R; Hykl J; Kalová J J Phys Chem Lett; 2014 Feb; 5(3):425-8. PubMed ID: 26276586 [TBL] [Abstract][Full Text] [Related]
4. Second inflection point of supercooled water surface tension induced by hydrogen bonds: A molecular-dynamics study. Hrahsheh F; Jum'h I; Wilemski G J Chem Phys; 2024 Mar; 160(11):. PubMed ID: 38506292 [TBL] [Abstract][Full Text] [Related]
5. Capillary condensation of water between mica surfaces above and below zero-effect of surface ions. Nowak D; Christenson HK Langmuir; 2009 Sep; 25(17):9908-12. PubMed ID: 19705887 [TBL] [Abstract][Full Text] [Related]
6. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
7. Micro-wilhelmy and related liquid property measurements using constant-diameter nanoneedle-tipped atomic force microscope probes. Yazdanpanah MM; Hosseini M; Pabba S; Berry SM; Dobrokhotov VV; Safir A; Keynton RS; Cohn RW Langmuir; 2008 Dec; 24(23):13753-64. PubMed ID: 18986184 [TBL] [Abstract][Full Text] [Related]
8. Second inflection point of water surface tension in the deeply supercooled regime revealed by entropy anomaly and surface structure using molecular dynamics simulations. Wang X; Binder K; Chen C; Koop T; Pöschl U; Su H; Cheng Y Phys Chem Chem Phys; 2019 Feb; 21(6):3360-3369. PubMed ID: 30693356 [TBL] [Abstract][Full Text] [Related]
9. Measurement of the surface tension of liquid marbles. Arbatan T; Shen W Langmuir; 2011 Nov; 27(21):12923-9. PubMed ID: 21910463 [TBL] [Abstract][Full Text] [Related]
10. Interfacial tension of a nematic liquid crystal/water interface with homeotropic surface alignment. Kim JW; Kim H; Lee M; Magda JJ Langmuir; 2004 Sep; 20(19):8110-3. PubMed ID: 15350080 [TBL] [Abstract][Full Text] [Related]
11. Fluid filtration and reabsorption across microvascular walls: control by oncotic or osmotic pressure? (secondary publication). Bulat M; Klarica M Croat Med J; 2014 Aug; 55(4):291-8. PubMed ID: 25300098 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous measurement of contact angle and surface tension using axisymmetric drop-shape analysis-no apex (ADSA-NA). Kalantarian A; David R; Chen J; Neumann AW Langmuir; 2011 Apr; 27(7):3485-95. PubMed ID: 21355566 [TBL] [Abstract][Full Text] [Related]
13. A new water anomaly: the temperature dependence of the proton mean kinetic energy. Flammini D; Ricci MA; Bruni F J Chem Phys; 2009 Jun; 130(23):236101. PubMed ID: 19548768 [TBL] [Abstract][Full Text] [Related]
14. Capillary rise of an isotropic-nematic fluid interface: surface tension and anchoring versus elasticity. Otten RH; van der Schoot P Langmuir; 2009 Feb; 25(4):2427-36. PubMed ID: 19149469 [TBL] [Abstract][Full Text] [Related]
15. Surface roughness of supercooled polymer melts. Sprung M; Seydel T; Gutt C; Weber R; DiMasi E; Madsen A; Tolan M Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):051809. PubMed ID: 15600648 [TBL] [Abstract][Full Text] [Related]
16. Possible Evidence for a New Form of Liquid Buried in the Surface Tension of Supercooled Water. Rogers TR; Leong KY; Wang F Sci Rep; 2016 Sep; 6():33284. PubMed ID: 27615518 [TBL] [Abstract][Full Text] [Related]
17. Surface tension of the most popular models of water by using the test-area simulation method. Vega C; de Miguel E J Chem Phys; 2007 Apr; 126(15):154707. PubMed ID: 17461659 [TBL] [Abstract][Full Text] [Related]
18. An internally consistent method for the molecular dynamics simulation of the surface tension: application to some TIP4P-type models of water. Mountain RD J Phys Chem B; 2009 Jan; 113(2):482-6. PubMed ID: 19086867 [TBL] [Abstract][Full Text] [Related]
19. Capillary rise in a microchannel of arbitrary shape and wettability: hysteresis loop. Wang Z; Chang CC; Hong SJ; Sheng YJ; Tsao HK Langmuir; 2012 Dec; 28(49):16917-26. PubMed ID: 23171321 [TBL] [Abstract][Full Text] [Related]
20. Surface tension of supercooled water nanodroplets from computer simulations. Malek SMA; Poole PH; Saika-Voivod I J Chem Phys; 2019 Jun; 150(23):234507. PubMed ID: 31228899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]