These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25849305)

  • 1. Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps.
    Chiloyan V; Garg J; Esfarjani K; Chen G
    Nat Commun; 2015 Apr; 6():6755. PubMed ID: 25849305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant heat transfer in the crossover regime between conduction and radiation.
    Kloppstech K; Könne N; Biehs SA; Rodriguez AW; Worbes L; Hellmann D; Kittel A
    Nat Commun; 2017 Feb; 8():. PubMed ID: 28198369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic phonon tunneling and heat transport due to evanescent electric fields.
    Prunnila M; Meltaus J
    Phys Rev Lett; 2010 Sep; 105(12):125501. PubMed ID: 20867653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon heat transfer across a vacuum through quantum fluctuations.
    Fong KY; Li HK; Zhao R; Yang S; Wang Y; Zhang X
    Nature; 2019 Dec; 576(7786):243-247. PubMed ID: 31827291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon-enhanced light matter interaction at the nanometre scale.
    Hillenbrand R; Taubner T; Keilmann F
    Nature; 2002 Jul; 418(6894):159-62. PubMed ID: 12110883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-mode heat conduction by photons.
    Meschke M; Guichard W; Pekola JP
    Nature; 2006 Nov; 444(7116):187-90. PubMed ID: 17093446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soft surfaces of nanomaterials enable strong phonon interactions.
    Bozyigit D; Yazdani N; Yarema M; Yarema O; Lin WM; Volk S; Vuttivorakulchai K; Luisier M; Juranyi F; Wood V
    Nature; 2016 Mar; 531(7596):618-22. PubMed ID: 26958836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiative heat transfer in the extreme near field.
    Kim K; Song B; Fernández-Hurtado V; Lee W; Jeong W; Cui L; Thompson D; Feist J; Reid MT; García-Vidal FJ; Cuevas JC; Meyhofer E; Reddy P
    Nature; 2015 Dec; 528(7582):387-91. PubMed ID: 26641312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps.
    Song B; Thompson D; Fiorino A; Ganjeh Y; Reddy P; Meyhofer E
    Nat Nanotechnol; 2016 Jun; 11(6):509-514. PubMed ID: 26950244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the electron-phonon interfacial conductance on the thermal transport at metal/dielectric interfaces.
    Lombard J; Detcheverry F; Merabia S
    J Phys Condens Matter; 2015 Jan; 27(1):015007. PubMed ID: 25425559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermi Surface Nesting and Phonon Frequency Gap Drive Anomalous Thermal Transport.
    Li C; Ravichandran NK; Lindsay L; Broido D
    Phys Rev Lett; 2018 Oct; 121(17):175901. PubMed ID: 30411930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional phonon transport in graphene.
    Nika DL; Balandin AA
    J Phys Condens Matter; 2012 Jun; 24(23):233203. PubMed ID: 22562955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-Field Thermal Radiation between Two Plates with Sub-10 nm Vacuum Separation.
    Salihoglu H; Nam W; Traverso L; Segovia M; Venuthurumilli PK; Liu W; Wei Y; Li W; Xu X
    Nano Lett; 2020 Aug; 20(8):6091-6096. PubMed ID: 32628493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement and Saturation of Near-Field Radiative Heat Transfer in Nanogaps between Metallic Surfaces.
    Rincón-García L; Thompson D; Mittapally R; Agraït N; Meyhofer E; Reddy P
    Phys Rev Lett; 2022 Sep; 129(14):145901. PubMed ID: 36240403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the interfacial friction force and thermal conductance by altering phonon properties at contact interface.
    Dong Y; Ding Y; Rui Z; Lian F; Hui W; Wu J; Wu Z; Yan P
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35180710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap.
    Bernardi MP; Milovich D; Francoeur M
    Nat Commun; 2016 Sep; 7():12900. PubMed ID: 27682992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal conductivity and large isotope effect in GaN from first principles.
    Lindsay L; Broido DA; Reinecke TL
    Phys Rev Lett; 2012 Aug; 109(9):095901. PubMed ID: 23002858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon-Polariton Mediated Thermal Radiation and Heat Transfer among Molecules and Macroscopic Bodies: Nonlocal Electromagnetic Response at Mesoscopic Scales.
    Venkataram PS; Hermann J; Tkatchenko A; Rodriguez AW
    Phys Rev Lett; 2018 Jul; 121(4):045901. PubMed ID: 30095944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime.
    St-Gelais R; Zhu L; Fan S; Lipson M
    Nat Nanotechnol; 2016 Jun; 11(6):515-519. PubMed ID: 26950243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colossal Enhancement of Near-Field Thermal Radiation Across Hundreds of Nanometers between Millimeter-Scale Plates through Surface Plasmon and Phonon Polaritons Coupling.
    Shi K; Sun Y; Chen Z; He N; Bao F; Evans J; He S
    Nano Lett; 2019 Nov; 19(11):8082-8088. PubMed ID: 31646871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.