These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25849388)

  • 1. Radiation decay of thaumatin crystals at three X-ray energies.
    Liebschner D; Rosenbaum G; Dauter M; Dauter Z
    Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):772-8. PubMed ID: 25849388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental determination of the radiation dose limit for cryocooled protein crystals.
    Owen RL; Rudiño-Piñera E; Garman EF
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):4912-7. PubMed ID: 16549763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation damage and dose limits in serial synchrotron crystallography at cryo- and room temperatures.
    de la Mora E; Coquelle N; Bury CS; Rosenthal M; Holton JM; Carmichael I; Garman EF; Burghammer M; Colletier JP; Weik M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(8):4142-4151. PubMed ID: 32047034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Know your dose: RADDOSE.
    Paithankar KS; Garman EF
    Acta Crystallogr D Biol Crystallogr; 2010 Apr; 66(Pt 4):381-8. PubMed ID: 20382991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global radiation damage at 300 and 260 K with dose rates approaching 1 MGy s⁻¹.
    Warkentin M; Badeau R; Hopkins JB; Mulichak AM; Keefe LJ; Thorne RE
    Acta Crystallogr D Biol Crystallogr; 2012 Feb; 68(Pt 2):124-33. PubMed ID: 22281741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beam-size effects in radiation damage in insulin and thaumatin crystals.
    Schulze-Briese C; Wagner A; Tomizaki T; Oetiker M
    J Synchrotron Radiat; 2005 May; 12(Pt 3):261-7. PubMed ID: 15840909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards atomic resolution with crystals grown in gel: the case of thaumatin seen at room temperature.
    Sauter C; Lorber B; Giegé R
    Proteins; 2002 Aug; 48(2):146-50. PubMed ID: 12112683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements.
    Warkentin M; Thorne RE
    Acta Crystallogr D Biol Crystallogr; 2010 Oct; 66(Pt 10):1092-100. PubMed ID: 20944242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose dependence of radiation damage for protein crystals studied at various X-ray energies.
    Shimizu N; Hirata K; Hasegawa K; Ueno G; Yamamoto M
    J Synchrotron Radiat; 2007 Jan; 14(Pt 1):4-10. PubMed ID: 17211067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of thaumatin crystals grown on earth and in microgravity.
    Ng JD; Lorber B; Giege R; Koszelak S; Day J; Greenwood A; McPherson A
    Acta Crystallogr D Biol Crystallogr; 1997 Nov; 53(Pt 6):724-33. PubMed ID: 11540583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy dependence of site-specific radiation damage in protein crystals.
    Homer C; Cooper L; Gonzalez A
    J Synchrotron Radiat; 2011 May; 18(Pt 3):338-45. PubMed ID: 21525641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation-damage investigation of a DNA 16-mer.
    Bugris V; Harmat V; Ferenc G; Brockhauser S; Carmichael I; Garman EF
    J Synchrotron Radiat; 2019 Jul; 26(Pt 4):998-1009. PubMed ID: 31274421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of X-ray-induced radiation damage of macromolecular crystals by data collection at 15 K: a systematic study.
    Meents A; Wagner A; Schneider R; Pradervand C; Pohl E; Schulze-Briese C
    Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):302-9. PubMed ID: 17327667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the X-ray lifetime of protein crystals.
    Zeldin OB; Brockhauser S; Bremridge J; Holton JM; Garman EF
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20551-6. PubMed ID: 24297937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MeshAndCollect: an automated multi-crystal data-collection workflow for synchrotron macromolecular crystallography beamlines.
    Zander U; Bourenkov G; Popov AN; de Sanctis D; Svensson O; McCarthy AA; Round E; Gordeliy V; Mueller-Dieckmann C; Leonard GA
    Acta Crystallogr D Biol Crystallogr; 2015 Nov; 71(Pt 11):2328-43. PubMed ID: 26527148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evidence for the benefits of higher X-ray energies for macromolecular crystallography.
    Storm SLS; Axford D; Owen RL
    IUCrJ; 2021 Nov; 8(Pt 6):896-904. PubMed ID: 34804543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resolution and dose dependence of radiation damage in biomolecular systems.
    Atakisi H; Conger L; Moreau DW; Thorne RE
    IUCrJ; 2019 Nov; 6(Pt 6):1040-1053. PubMed ID: 31709060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ X-ray analysis of protein crystals in low-birefringent and X-ray transmissive plastic microchannels.
    Ng JD; Clark PJ; Stevens RC; Kuhn P
    Acta Crystallogr D Biol Crystallogr; 2008 Feb; 64(Pt 2):189-97. PubMed ID: 18219119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray and UV radiation-damage-induced phasing using synchrotron serial crystallography.
    Foos N; Seuring C; Schubert R; Burkhardt A; Svensson O; Meents A; Chapman HN; Nanao MH
    Acta Crystallogr D Struct Biol; 2018 Apr; 74(Pt 4):366-378. PubMed ID: 29652263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-dose X-ray structure analysis of cytochrome c oxidase utilizing high-energy X-rays.
    Ueno G; Shimada A; Yamashita E; Hasegawa K; Kumasaka T; Shinzawa-Itoh K; Yoshikawa S; Tsukihara T; Yamamoto M
    J Synchrotron Radiat; 2019 Jul; 26(Pt 4):912-921. PubMed ID: 31274413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.