BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 25849490)

  • 1. A novel system for evaluating drought-cold tolerance of grapevines using chlorophyll fluorescence.
    Su L; Dai Z; Li S; Xin H
    BMC Plant Biol; 2015 Mar; 15():82. PubMed ID: 25849490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance.
    Dubrovina AS; Kiselev KV; Khristenko VS; Aleynova OA
    J Plant Physiol; 2015 Aug; 185():1-12. PubMed ID: 26264965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress.
    Xin H; Zhu W; Wang L; Xiang Y; Fang L; Li J; Sun X; Wang N; Londo JP; Li S
    PLoS One; 2013; 8(3):e58740. PubMed ID: 23516547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of polyethylene glycol induced drought stress on photosynthesis in two chickpea genotypes with different drought tolerance.
    Saglam A; Terzi R; Demiralay M
    Acta Biol Hung; 2014 Jun; 65(2):178-88. PubMed ID: 24873911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alleviation of drought stress in grapevine by foliar-applied strigolactones.
    Min Z; Li R; Chen L; Zhang Y; Li Z; Liu M; Ju Y; Fang Y
    Plant Physiol Biochem; 2019 Feb; 135():99-110. PubMed ID: 30529172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near isohydric grapevine cultivar displays higher photosynthetic efficiency and photorespiration rates under drought stress as compared with near anisohydric grapevine cultivar.
    Hochberg U; Degu A; Fait A; Rachmilevitch S
    Physiol Plant; 2013 Apr; 147(4):443-52. PubMed ID: 22901023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential physiological response of the grapevine varieties Touriga Nacional and Trincadeira to combined heat, drought and light stresses.
    Carvalho LC; Coito JL; Gonçalves EF; Chaves MM; Amâncio S
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():101-11. PubMed ID: 26518605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Responses of Jatropha curcas L. seedlings to drought stress].
    Dou XY; Wu GJ; Huang HY; Hou YJ; Gu Q; Peng CL
    Ying Yong Sheng Tai Xue Bao; 2008 Jul; 19(7):1425-30. PubMed ID: 18839898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of drought tolerance of new grapevine rootstock hybrids.
    Pavlousek P
    J Environ Biol; 2011 Sep; 32(5):543-9. PubMed ID: 22319867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous responses of photosystem II and soluble proteins of rapeseed to cold acclimation.
    Arminian A; Dehghani Bidgoli R
    Cell Mol Biol (Noisy-le-grand); 2019 Feb; 65(2):37-49. PubMed ID: 30860470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drought stress tolerance in grapevine involves activation of polyamine oxidation contributing to improved immune response and low susceptibility to Botrytis cinerea.
    Hatmi S; Gruau C; Trotel-Aziz P; Villaume S; Rabenoelina F; Baillieul F; Eullaffroy P; Clément C; Ferchichi A; Aziz A
    J Exp Bot; 2015 Feb; 66(3):775-87. PubMed ID: 25385768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive effects of drought stresses and elevated CO2 concentration on photochemistry efficiency of cucumber seedlings.
    Li QM; Liu BB; Wu Y; Zou ZR
    J Integr Plant Biol; 2008 Oct; 50(10):1307-17. PubMed ID: 19017118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ABA-mediated responses to water deficit separate grapevine genotypes by their genetic background.
    Rossdeutsch L; Edwards E; Cookson SJ; Barrieu F; Gambetta GA; Delrot S; Ollat N
    BMC Plant Biol; 2016 Apr; 16():91. PubMed ID: 27091220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorophyll fluorescence variation in two Mediterranean forest species over a 21-year drought treatment period.
    Silvestre-Carbonell S; Ogaya R; Fernández-Martínez M; Peñuelas J
    Tree Physiol; 2023 Sep; 43(9):1533-1547. PubMed ID: 37145498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel functional microRNAs from virus-free and infected Vitis vinifera plants under water stress.
    Pantaleo V; Vitali M; Boccacci P; Miozzi L; Cuozzo D; Chitarra W; Mannini F; Lovisolo C; Gambino G
    Sci Rep; 2016 Feb; 6():20167. PubMed ID: 26833264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transcription factor VaNAC72-regulated expression of the VaCP17 gene from Chinese wild Vitis amurensis enhances cold tolerance in transgenic grape (V. vinifera).
    Qin H; Cui X; Shu X; Zhang J
    Plant Physiol Biochem; 2023 Jul; 200():107768. PubMed ID: 37247556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes).
    Ramírez-Valiente JA; Koehler K; Cavender-Bares J
    Tree Physiol; 2015 May; 35(5):521-34. PubMed ID: 25939867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low Temperature Stress Mediates the Antioxidants Pool and Chlorophyll Fluorescence in
    Aazami MA; Asghari-Aruq M; Hassanpouraghdam MB; Ercisli S; Baron M; Sochor J
    Plants (Basel); 2021 Sep; 10(9):. PubMed ID: 34579411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold.
    Gimeno TE; Pías B; Lemos-Filho JP; Valladares F
    Tree Physiol; 2009 Jan; 29(1):87-98. PubMed ID: 19203935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthesis, photochemistry and antioxidative defence in response to two drought severities and with re-watering in Allocasuarina luehmannii.
    Posch S; Bennett LT
    Plant Biol (Stuttg); 2009 Nov; 11 Suppl 1():83-93. PubMed ID: 19778372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.