BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25849490)

  • 21. Evaluation of drought tolerance of new grapevine rootstock hybrids.
    Pavlousek P
    J Environ Biol; 2011 Sep; 32(5):543-9. PubMed ID: 22319867
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water stress effects on stay green and chlorophyll fluorescence with focus on yield characteristics of diverse bread wheats.
    Ali A; Ullah Z; Sher H; Abbas Z; Rasheed A
    Planta; 2023 Apr; 257(6):104. PubMed ID: 37115268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance.
    Dugasa MT; Cao F; Ibrahim W; Wu F
    Physiol Plant; 2019 Feb; 165(2):134-143. PubMed ID: 29635753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in understanding cold tolerance in grapevine.
    Ren C; Fan P; Li S; Liang Z
    Plant Physiol; 2023 Jul; 192(3):1733-1746. PubMed ID: 36789447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physiological, biochemical and molecular responses associated with drought tolerance in grafted grapevine.
    Jiao S; Zeng F; Huang Y; Zhang L; Mao J; Chen B
    BMC Plant Biol; 2023 Feb; 23(1):110. PubMed ID: 36814197
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of investigation methods of heat injury in grapevine (Vitis) and assessment to heat tolerance in different cultivars and species.
    Xu H; Liu G; Liu G; Yan B; Duan W; Wang L; Li S
    BMC Plant Biol; 2014 Jun; 14():156. PubMed ID: 24898786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The response of contrasting tomato genotypes to combined heat and drought stress.
    Nankishore A; Farrell AD
    J Plant Physiol; 2016 Sep; 202():75-82. PubMed ID: 27467552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overexpression of Saussurea involucrata dehydrin gene SiDHN promotes cold and drought tolerance in transgenic tomato plants.
    Guo X; Zhang L; Wang X; Zhang M; Xi Y; Wang A; Zhu J
    PLoS One; 2019; 14(11):e0225090. PubMed ID: 31738789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid and low-cost screening for single and combined effects of drought and heat stress on the morpho-physiological traits of African eggplant (Solanum aethiopicum) germplasm.
    Opoku VA; Adu MO; Asare PA; Asante J; Hygienus G; Andersen MN
    PLoS One; 2024; 19(1):e0295512. PubMed ID: 38289974
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomass, chlorophyll fluorescence, and osmoregulation traits let differentiation of wild and cultivated Amaranthus under water stress.
    Vargas-Ortiz E; Ramírez-Tobias HM; González-Escobar JL; Gutiérrez-García AK; Bojórquez-Velázquez E; Espitia-Rangel E; Barba de la Rosa AP
    J Photochem Photobiol B; 2021 Jul; 220():112210. PubMed ID: 34000487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-parameter characterization of water stress tolerance in Vitis hybrids for new rootstock selection.
    Bianchi D; Grossi D; Tincani DTG; Simone Di Lorenzo G; Brancadoro L; Rustioni L
    Plant Physiol Biochem; 2018 Nov; 132():333-340. PubMed ID: 30248519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Difference in oxidative stress tolerance between rice cultivars estimated with chlorophyll fluorescence analysis.
    Kasajima I
    BMC Res Notes; 2017 Apr; 10(1):168. PubMed ID: 28446247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drought stress tolerance in grapevine involves activation of polyamine oxidation contributing to improved immune response and low susceptibility to Botrytis cinerea.
    Hatmi S; Gruau C; Trotel-Aziz P; Villaume S; Rabenoelina F; Baillieul F; Eullaffroy P; Clément C; Ferchichi A; Aziz A
    J Exp Bot; 2015 Feb; 66(3):775-87. PubMed ID: 25385768
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Responses of photosynthetic characteristics in leaves of Physocarpus amurensis and P opulifolius to drought stress].
    Xu N; Meng XX; Zhao XM; Ai C; Sun JQ; Zhang SY; Zhang CY; Zhang HH
    Ying Yong Sheng Tai Xue Bao; 2017 Jun; 28(6):1955-1961. PubMed ID: 29745159
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitivity of photosynthetic processes to freezing temperature in extremophilic lichens evaluated by linear cooling and chlorophyll fluorescence.
    Hájek J; Barták M; Hazdrová J; Forbelská M
    Cryobiology; 2016 Dec; 73(3):329-334. PubMed ID: 27729220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measuring Freezing Tolerance of Leaves and Rosettes: Electrolyte Leakage and Chlorophyll Fluorescence Assays.
    Thalhammer A; Pagter M; Hincha DK; Zuther E
    Methods Mol Biol; 2020; 2156():9-21. PubMed ID: 32607971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vitis Myb14 confer cold and drought tolerance by activating lipid transfer protein genes expression and reactive oxygen species scavenge.
    Fang L; Wang Z; Su L; Gong L; Xin H
    Gene; 2024 Jan; 890():147792. PubMed ID: 37714279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of combined extreme cold and drought stress on growth, photosynthesis, and physiological characteristics of cool-season grasses.
    Li J; Bai X; Ran F; Zhang C; Yan Y; Li P; Chen H
    Sci Rep; 2024 Jan; 14(1):116. PubMed ID: 38167885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of nitric oxide-mediated alternative pathway in tolerance of wheat to drought stress by optimizing photosynthesis.
    Wang H; Huang J; Li Y; Li C; Hou J; Liang W
    Plant Cell Rep; 2016 Oct; 35(10):2033-44. PubMed ID: 27294277
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MbICE1 Confers Drought and Cold Tolerance through Up-Regulating Antioxidant Capacity and Stress-Resistant Genes in
    Duan Y; Han J; Guo B; Zhao W; Zhou S; Zhou C; Zhang L; Li X; Han D
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555710
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.