These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25849640)

  • 1. Design and fabrication of magnetically functionalized flexible micropillar arrays for rapid and controllable microfluidic mixing.
    Zhou B; Xu W; Syed AA; Chau Y; Chen L; Chew B; Yassine O; Wu X; Gao Y; Zhang J; Xiao X; Kosel J; Zhang XX; Yao Z; Wen W
    Lab Chip; 2015 May; 15(9):2125-32. PubMed ID: 25849640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces.
    Chandra D; Yang S
    Acc Chem Res; 2010 Aug; 43(8):1080-91. PubMed ID: 20552977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetically actuated artificial cilia for optimum mixing performance in microfluidics.
    Chen CY; Chen CY; Lin CY; Hu YT
    Lab Chip; 2013 Jul; 13(14):2834-9. PubMed ID: 23685964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing.
    Park SG; Lee SK; Moon JH; Yang SM
    Lab Chip; 2009 Nov; 9(21):3144-50. PubMed ID: 19823731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical fabrication of microfluidic platforms for live-cell microscopy.
    Lorusso D; Nikolov HN; Milner JS; Ochotny NM; Sims SM; Dixon SJ; Holdsworth DW
    Biomed Microdevices; 2016 Oct; 18(5):78. PubMed ID: 27523472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Janus Si micropillar arrays with thermal-responsive anisotropic wettability for manipulation of microfluid motions.
    Wang T; Chen H; Liu K; Wang S; Xue P; Yu Y; Ge P; Zhang J; Yang B
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):376-82. PubMed ID: 25479323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex microfluidic system integrating sequential operations of microalgal lipid production.
    Kwak HS; Kim JY; Na SC; Jeon NL; Sim SJ
    Analyst; 2016 Feb; 141(4):1218-25. PubMed ID: 26783562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge.
    Cha KJ; Kim DS
    Biomed Microdevices; 2011 Oct; 13(5):877-83. PubMed ID: 21698383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown.
    Tahvildari R; Beamish E; Tabard-Cossa V; Godin M
    Lab Chip; 2015 Mar; 15(6):1407-11. PubMed ID: 25631885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic pool structure for cell docking and rapid mixing.
    Yang J; Yang J; Yin ZQ; Svir I; Xu J; Luo HY; Wang M; Cao Y; Hu N; Liao YJ; Zheng XL
    Anal Chim Acta; 2009 Feb; 634(1):61-7. PubMed ID: 19154811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs.
    Yu L; Li CM; Liu Y; Gao J; Wang W; Gan Y
    Lab Chip; 2009 May; 9(9):1243-7. PubMed ID: 19370243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of robust hydrogel coatings on polydimethylsiloxane substrates using micropillar anchor structures with chemical surface modification.
    Zhang H; Bian C; Jackson JK; Khademolhosseini F; Burt HM; Chiao M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9126-33. PubMed ID: 24853631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel fabrication technique to minimize poly(dimethylsiloxane)-microchannels deformation under high-pressure operation.
    Madadi H; Mohammadi M; Casals-Terré J; López RC
    Electrophoresis; 2013 Dec; 34(22-23):3126-32. PubMed ID: 24114728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic baker's transformation device for three-dimensional rapid mixing.
    Yasui T; Omoto Y; Osato K; Kaji N; Suzuki N; Naito T; Watanabe M; Okamoto Y; Tokeshi M; Shamoto E; Baba Y
    Lab Chip; 2011 Oct; 11(19):3356-60. PubMed ID: 21845274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stirring system using suspended magnetically-actuated pillars for controlled cell clustering.
    Saberi A; Zhang S; van den Bersselaar C; Kandail H; den Toonder JMJ; Kurniawan NA
    Soft Matter; 2019 Feb; 15(6):1435-1443. PubMed ID: 30666323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reciprocating flow-based centrifugal microfluidics mixer.
    Noroozi Z; Kido H; Micic M; Pan H; Bartolome C; Princevac M; Zoval J; Madou M
    Rev Sci Instrum; 2009 Jul; 80(7):075102. PubMed ID: 19655976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable microfluidic logic device fabricated with a shape memory polymer.
    Yang SH; Park J; Youn JR; Song YS
    Lab Chip; 2018 Sep; 18(18):2865-2872. PubMed ID: 30105331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High yield fabrication of multilayer polydimethylsiloxane [corrected] devices with freestanding micropillar arrays.
    Gregory CW; Sellgren KL; Gilchrist KH; Grego S
    Biomicrofluidics; 2013; 7(5):56503. PubMed ID: 24396532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel PDMS cylindrical channels that generate coaxial flow, and application to fabrication of microfibers and particles.
    Kang E; Shin SJ; Lee KH; Lee SH
    Lab Chip; 2010 Jul; 10(14):1856-61. PubMed ID: 20454720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.