BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25849739)

  • 1. Synthesis, Characterization, and Sunlight Mediated Photocatalytic Activity of CuO Coated ZnO for the Removal of Nitrophenols.
    Qamar MT; Aslam M; Ismail IM; Salah N; Hameed A
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8757-69. PubMed ID: 25849739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced photocatalytic activity of V₂O₅-ZnO composites for the mineralization of nitrophenols.
    Aslam M; Ismail IM; Almeelbi T; Salah N; Chandrasekaran S; Hameed A
    Chemosphere; 2014 Dec; 117():115-23. PubMed ID: 24997282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of sunlight induced structural changes and their effect on the photocatalytic activity of V2O5 for the degradation of phenols.
    Aslam M; Ismail IM; Salah N; Chandrasekaran S; Qamar MT; Hameed A
    J Hazard Mater; 2015 Apr; 286():127-35. PubMed ID: 25569447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures.
    Kuriakose S; Satpati B; Mohapatra S
    Phys Chem Chem Phys; 2015 Oct; 17(38):25172-81. PubMed ID: 26352866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization and photocatalytic performance of W
    Alenazi DAK; Chandrasekaran S; Soomro MT; Aslam M; Hameed A; Ali S; Danish EY; Ismail IMI
    Chemosphere; 2021 Feb; 265():129135. PubMed ID: 33302195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocatalytic activity of V doped ZnO nanoparticles thin films for the removal of 2- chlorophenol from the aquatic environment under natural sunlight exposure.
    Salah N; Hameed A; Aslam M; Babkair SS; Bahabri FS
    J Environ Manage; 2016 Jul; 177():53-64. PubMed ID: 27082257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superior Photostability and Photocatalytic Activity of ZnO Nanoparticles Coated with Ultrathin TiO2 Layers through Atomic-Layer Deposition.
    Sridharan K; Jang E; Park YM; Park TJ
    Chemistry; 2015 Dec; 21(52):19136-41. PubMed ID: 26560176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of size-controlled CeO
    Aslam M; Qamar MT; Soomro MT; Danish EY; Ismail IMI; Hameed A
    Chemosphere; 2022 Feb; 289():133092. PubMed ID: 34856239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of SnO
    Aslam M; Qamar MT; Ali S; Rehman AU; Soomro MT; Ahmed I; Ismail IMI; Hameed A
    J Environ Manage; 2018 Jul; 217():805-814. PubMed ID: 29660706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sunlight responsive WO₃/ZnO nanorods for photocatalytic degradation and mineralization of chlorinated phenoxyacetic acid herbicides in water.
    Lam SM; Sin JC; Abdullah AZ; Mohamed AR
    J Colloid Interface Sci; 2015 Jul; 450():34-44. PubMed ID: 25801130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO-CuO nanocomposites prepared by carbothermal evaporation method.
    Kuriakose S; Avasthi DK; Mohapatra S
    Beilstein J Nanotechnol; 2015; 6():928-37. PubMed ID: 25977864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of core-shell CuO/Ag nanowires with enhanced photocatalytic and enhancement in photocurrent.
    Liu X; Li Z; Zhao C; Zhao W; Yang J; Wang Y; Li F
    J Colloid Interface Sci; 2014 Apr; 419():9-16. PubMed ID: 24491323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CuO/ZnO coupled oxide films obtained by the electrodeposition technique and their photocatalytic activity in phenol degradation under solar irradiation.
    Paz DS; Foletto EL; Bertuol DA; Jahn SL; Collazzo GC; da Silva SS; Chiavone-Filho O; do Nascimento CA
    Water Sci Technol; 2013; 68(5):1031-6. PubMed ID: 24037153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology controlled bulk synthesis of disc-shaped WO3 powder and evaluation of its photocatalytic activity for the degradation of phenols.
    Aslam M; Ismail IM; Chandrasekaran S; Hameed A
    J Hazard Mater; 2014 Jul; 276():120-8. PubMed ID: 24869630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesizing CuO/CeO
    Luo K; Li J; Hu W; Li H; Zhang Q; Yuan H; Yu F; Xu M; Xu S
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 33003531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced visible light photocatalytic activity of ZnIn2S4 modified by semiconductors.
    Yang S; Li L; Yuan W; Xia Z
    Dalton Trans; 2015 Apr; 44(14):6374-83. PubMed ID: 25742708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CuO quantum-dot-sensitized mesoporous ZnO for visible-light photocatalysis.
    Liu Y; Shi J; Peng Q; Li Y
    Chemistry; 2013 Mar; 19(13):4319-26. PubMed ID: 23447144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile synthesis of Ag-ZnO hybrid nanospindles for highly efficient photocatalytic degradation of methyl orange.
    Kuriakose S; Choudhary V; Satpati B; Mohapatra S
    Phys Chem Chem Phys; 2014 Sep; 16(33):17560-8. PubMed ID: 25025425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoremediation: Sunlight mediated dye degradation using electrospun PAN/CuO-ZnO nanofibrous composites.
    Jena SK; Sadasivam R; Packirisamy G; Saravanan P
    Environ Pollut; 2021 Jul; 280():116964. PubMed ID: 33794417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple ball milling method for the preparation of p-CuO/n-ZnO nanocomposite photocatalysts with high photocatalytic activity.
    Sapkota BB; Mishra SR
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6588-96. PubMed ID: 24245119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.