These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25849896)

  • 61. Mapping of QTLs associated with biological nitrogen fixation traits in soybean.
    Santos MA; Geraldi IO; Garcia AA; Bortolatto N; Schiavon A; Hungria M
    Hereditas; 2013 Jun; 150(2-3):17-25. PubMed ID: 23865962
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps.
    Zhao X; Han Y; Li Y; Liu D; Sun M; Zhao Y; Lv C; Li D; Yang Z; Huang L; Teng W; Qiu L; Zheng H; Li W
    Plant J; 2015 Apr; 82(2):245-55. PubMed ID: 25736370
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max.
    Liu Y; Wei H
    Genome; 2017 Jul; 60(7):564-571. PubMed ID: 28314115
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Highly variable patterns of linkage disequilibrium in multiple soybean populations.
    Hyten DL; Choi IY; Song Q; Shoemaker RC; Nelson RL; Costa JM; Specht JE; Cregan PB
    Genetics; 2007 Apr; 175(4):1937-44. PubMed ID: 17287533
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Long-read bitter gourd (
    Matsumura H; Hsiao MC; Lin YP; Toyoda A; Taniai N; Tarora K; Urasaki N; Anand SS; Dhillon NPS; Schafleitner R; Lee CR
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14543-14551. PubMed ID: 32461376
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genome-wide association and genomic prediction identifies associated loci and predicts the sensitivity of Tobacco ringspot virus in soybean plant introductions.
    Chang HX; Brown PJ; Lipka AE; Domier LL; Hartman GL
    BMC Genomics; 2016 Feb; 17():153. PubMed ID: 26924079
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of Two Growth Period QTLs Reveals Modification of PRR3 Genes During Soybean Domestication.
    Li MW; Liu W; Lam HM; Gendron JM
    Plant Cell Physiol; 2019 Feb; 60(2):407-420. PubMed ID: 30418611
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Genome-wide nucleotide patterns and potential mechanisms of genome divergence following domestication in maize and soybean.
    Wang J; Li X; Do Kim K; Scanlon MJ; Jackson SA; Springer NM; Yu J
    Genome Biol; 2019 Apr; 20(1):74. PubMed ID: 31018867
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Diversifying selection on flavanone 3-hydroxylase and isoflavone synthase genes in cultivated soybean and its wild progenitors.
    Cheng H; Wang J; Chu S; Yan HL; Yu D
    PLoS One; 2013; 8(1):e54154. PubMed ID: 23342093
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time.
    Wang Y; Gu Y; Gao H; Qiu L; Chang R; Chen S; He C
    BMC Evol Biol; 2016 Apr; 16():79. PubMed ID: 27072125
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Molecular mechanisms involved in convergent crop domestication.
    Lenser T; Theißen G
    Trends Plant Sci; 2013 Dec; 18(12):704-14. PubMed ID: 24035234
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The wild side of a major crop: soybean's perennial cousins from Down Under.
    Sherman-Broyles S; Bombarely A; Powell AF; Doyle JL; Egan AN; Coate JE; Doyle JJ
    Am J Bot; 2014 Oct; 101(10):1651-65. PubMed ID: 25326613
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Nucleotide sequences encoding glycinin B4 polypeptide of the cultivated soybean Glycine max and its presumed wild-type ancestor Glycine soja in connection with the origin of cultivated soybean].
    Zakharova ES; Epishin SM; Vinetskiĭ IuP
    Genetika; 1989 Nov; 25(11):1915-24. PubMed ID: 2625198
    [TBL] [Abstract][Full Text] [Related]  

  • 74. LABA1, a Domestication Gene Associated with Long, Barbed Awns in Wild Rice.
    Hua L; Wang DR; Tan L; Fu Y; Liu F; Xiao L; Zhu Z; Fu Q; Sun X; Gu P; Cai H; McCouch SR; Sun C
    Plant Cell; 2015 Jul; 27(7):1875-88. PubMed ID: 26082172
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genome-Wide Association Mapping of Host-Plant Resistance to Soybean Aphid.
    Hanson AA; Lorenz AJ; Hesler LS; Bhusal SJ; Bansal R; Michel AP; Jiang GL; Koch RL
    Plant Genome; 2018 Nov; 11(3):. PubMed ID: 30512046
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7.
    Zhao X; Teng W; Li Y; Liu D; Cao G; Li D; Qiu L; Zheng H; Han Y; Li W
    BMC Genomics; 2017 Jun; 18(1):462. PubMed ID: 28615053
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Genetic diversity of rhg1 and Rhg4 loci in wild soybeans resistant to soybean cyst nematode race 3.
    Yuan CP; Wang YJ; Zhao HK; Zhang L; Wang YM; Liu XD; Zhong XF; Dong YS
    Genet Mol Res; 2016 Jun; 15(2):. PubMed ID: 27323148
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max.
    Li B; Tian L; Zhang J; Huang L; Han F; Yan S; Wang L; Zheng H; Sun J
    BMC Genomics; 2014 Dec; 15(1):1086. PubMed ID: 25494922
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A comprehensive analysis of the Cupin gene family in soybean (Glycine max).
    Wang X; Zhang H; Gao Y; Sun G; Zhang W; Qiu L
    PLoS One; 2014; 9(10):e110092. PubMed ID: 25360675
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Identification of candidate domestication-related genes with a systematic survey of loss-of-function mutations.
    Torkamaneh D; Laroche J; Rajcan I; Belzile F
    Plant J; 2018 Dec; 96(6):1218-1227. PubMed ID: 30246271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.