These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25850004)

  • 1. Advantages and limitations of the use of optogenetic approach in studying fast-scale spike encoding.
    Malyshev A; Goz R; LoTurco JJ; Volgushev M
    PLoS One; 2015; 10(4):e0122286. PubMed ID: 25850004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetics in Drosophila Neuroscience.
    Riemensperger T; Kittel RJ; Fiala A
    Methods Mol Biol; 2016; 1408():167-75. PubMed ID: 26965122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of dendritic synaptic processing in the lateral superior olive by hyperpolarization-activated currents.
    Leão KE; Leão RN; Walmsley B
    Eur J Neurosci; 2011 Apr; 33(8):1462-70. PubMed ID: 21366727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injection of fully-defined signal mixtures: a novel high-throughput tool to study neuronal encoding and computations.
    Ilin V; Stevenson IH; Volgushev M
    PLoS One; 2014; 9(10):e109928. PubMed ID: 25335081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike timing and reliability in cortical pyramidal neurons: effects of EPSC kinetics, input synchronization and background noise on spike timing.
    Rodriguez-Molina VM; Aertsen A; Heck DH
    PLoS One; 2007 Mar; 2(3):e319. PubMed ID: 17389910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic Approaches for Mesoscopic Brain Mapping.
    Kyweriga M; Mohajerani MH
    Methods Mol Biol; 2016; 1408():251-65. PubMed ID: 26965128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of dendritic conductances on the input-output properties of neurons.
    Reyes A
    Annu Rev Neurosci; 2001; 24():653-75. PubMed ID: 11520915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo optogenetic stimulation of neocortical excitatory neurons drives brain-state-dependent inhibition.
    Mateo C; Avermann M; Gentet LJ; Zhang F; Deisseroth K; Petersen CC
    Curr Biol; 2011 Oct; 21(19):1593-602. PubMed ID: 21945274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maintenance of optogenetic channel rhodopsin (ChR2) function in aging mice: Implications for pharmacological studies of inhibitory synaptic transmission, quantal content, and calcium homeostasis.
    DuBois DW; Murchison DA; Mahnke AH; Bang E; Winzer-Serhan U; Griffith WH; Souza KA
    Neuropharmacology; 2023 Nov; 238():109651. PubMed ID: 37414332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic Interrogation of Electrophysiological Dendritic Properties and Their Effect on Pacemaking Neurons from Acute Rodent Brain Slices.
    Gilin N; Wattad N; Tiroshi L; Goldberg JA
    Bio Protoc; 2024 May; 14(10):e4992. PubMed ID: 38798977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliable control of spike rate and spike timing by rapid input transients in cerebellar stellate cells.
    Suter KJ; Jaeger D
    Neuroscience; 2004; 124(2):305-17. PubMed ID: 14980381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel role for MNTB neuron dendrites in regulating action potential amplitude and cell excitability during repetitive firing.
    Leão RN; Leão RM; da Costa LF; Rock Levinson S; Walmsley B
    Eur J Neurosci; 2008 Jun; 27(12):3095-108. PubMed ID: 18598256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual Color Neural Activation and Behavior Control with Chrimson and CoChR in Caenorhabditis elegans.
    Schild LC; Glauser DA
    Genetics; 2015 Aug; 200(4):1029-34. PubMed ID: 26022242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability and precision of neural spike timing: simulation of spectrally broadband synaptic inputs.
    Szucs A; Vehovszky A; Molnár G; Pinto RD; Abarbanel HD
    Neuroscience; 2004; 126(4):1063-73. PubMed ID: 15207339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid compartmental model for the alligator Purkinje cell. I: Preferred somatopetal conduction of dendritic spikes and soma-axon interaction.
    Pottala EW; Mortimer JA
    J Neurosci Res; 1975; 1(3-4):207-25. PubMed ID: 1225987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendritic Ih ensures high-fidelity dendritic spike responses of motion-sensitive neurons in rat superior colliculus.
    Endo T; Tarusawa E; Notomi T; Kaneda K; Hirabayashi M; Shigemoto R; Isa T
    J Neurophysiol; 2008 May; 99(5):2066-76. PubMed ID: 18216232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Chimera Na+-Pump Rhodopsin as an Effective Optogenetic Silencer.
    Hoque MR; Ishizuka T; Inoue K; Abe-Yoshizumi R; Igarashi H; Mishima T; Kandori H; Yawo H
    PLoS One; 2016; 11(11):e0166820. PubMed ID: 27861619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights.
    Williams JC; Entcheva E
    Biophys J; 2015 Apr; 108(8):1934-45. PubMed ID: 25902433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic Tools for Confined Stimulation in Deep Brain Structures.
    Castonguay A; Thomas S; Lesage F; Casanova C
    Methods Mol Biol; 2016; 1408():267-79. PubMed ID: 26965129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.