These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 2585002)
1. Theoretical studies of the mechanism of the action of the neurohypophyseal hormones. I. Molecular electrostatic potential (MEP) and molecular electrostatic field (MEF) maps of some vasopressin analogues. Liwo A; Tempczyk A; Grzonka Z J Comput Aided Mol Des; 1989 Sep; 3(3):261-84. PubMed ID: 2585002 [TBL] [Abstract][Full Text] [Related]
2. Molecular mechanics calculations on deaminooxytocin and on deamino-arginine-vasopressin and its analogues. Liwo A; Tempczyk A; Grzonka Z J Comput Aided Mol Des; 1989 Jan; 2(4):281-309. PubMed ID: 2715790 [TBL] [Abstract][Full Text] [Related]
3. Exploration of the conformational space of oxytocin and arginine-vasopressin using the electrostatically driven Monte Carlo and molecular dynamics methods. Liwo A; Tempczyk A; Ołdziej S; Shenderovich MD; Hruby VJ; Talluri S; Ciarkowski J; Kasprzykowski F; Lankiewicz L; Grzonka Z Biopolymers; 1996 Feb; 38(2):157-75. PubMed ID: 8589250 [TBL] [Abstract][Full Text] [Related]
4. Theoretical conformational analysis of three vasopressin antagonists with a modified cyclohexyl ring in the first thioacid residue. Kaźmierkiewicz R; Liwo A; Lammek B Int J Pept Protein Res; 1995 May; 45(5):451-8. PubMed ID: 7591484 [TBL] [Abstract][Full Text] [Related]
5. Analogues of neurohypophyseal hormones, oxytocin and arginine vasopressin, conformationally restricted in the N-terminal part of the molecule. Kowalczyk W; Prahl A; Derdowska I; Sobolewski D; Olejnik J; Zabrocki J; Borovicková L; Slaninová J; Lammek B J Med Chem; 2006 Mar; 49(6):2016-21. PubMed ID: 16539389 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of action and structural requirements of vasopressin analog inhibition of transepithelial water flux in toad urinary bladder. Mann WA; Stassen F; Huffman W; Kinter LB J Pharmacol Exp Ther; 1986 Aug; 238(2):401-6. PubMed ID: 3090234 [TBL] [Abstract][Full Text] [Related]
7. Analysis of interactions responsible for vasopressin binding to human neurohypophyseal hormone receptors-molecular dynamics study of the activated receptor-vasopressin-G(alpha) systems. Slusarz MJ; Giełdoń A; Slusarz R; Ciarkowski J J Pept Sci; 2006 Mar; 12(3):180-9. PubMed ID: 16114100 [TBL] [Abstract][Full Text] [Related]
8. Neurohypophyseal hormones, analogs, and fragments: their effect on puromycin-induced amnesia. Walter R; Hoffman PL; Flexner JB; Flexner LB Proc Natl Acad Sci U S A; 1975 Oct; 72(10):4180-4. PubMed ID: 1060098 [TBL] [Abstract][Full Text] [Related]
10. Hemodynamic effects of neurohypophyseal peptides with antidiuretic activity in dogs. Schwartz J; Liard JF; Ott C; Cowley AW Am J Physiol; 1985 Nov; 249(5 Pt 2):H1001-8. PubMed ID: 3840655 [TBL] [Abstract][Full Text] [Related]
11. Molecular docking-based study of vasopressin analogues modified at positions 2 and 3 with N-methylphenylalanine: influence on receptor-bound conformations and interactions with vasopressin and oxytocin receptors. Slusarz MJ; Sikorska E; Slusarz R; Ciarkowski J J Med Chem; 2006 Apr; 49(8):2463-9. PubMed ID: 16610789 [TBL] [Abstract][Full Text] [Related]
12. Functional relations of crab molt-inhibiting hormone and neurohypophysial peptides. Mattson MP; Spaziani E Peptides; 1985; 6(4):635-40. PubMed ID: 2999730 [TBL] [Abstract][Full Text] [Related]
13. Central nervous system effects of the neurohypophyseal hormones and related peptides. de Wied D; Diamant M; Fodor M Front Neuroendocrinol; 1993 Oct; 14(4):251-302. PubMed ID: 8258377 [TBL] [Abstract][Full Text] [Related]
14. Fluorescence study of neurohypophyseal hormones and their analogues. Distance distributions in a series of arginine-vasopressin analogues. Wiczk W; Lankiewicz L; Kasprzykowski F; Ołdziej S; Szmaciński H; Lakowicz JR; Grzonka Z Eur Biophys J; 1997; 26(2):183-93. PubMed ID: 9232846 [TBL] [Abstract][Full Text] [Related]
15. Modification of conditioned behavior of rats by neurohypophyseal hormones and analogues. Walter R; van Ree JM; de Wied D Proc Natl Acad Sci U S A; 1978 May; 75(5):2493-6. PubMed ID: 276885 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and some pharmacological properties of 18 potent O-alkyltyrosine-substituted antagonists of the vasopressor responses to arginine-vasopressin. Manning M; Lammek B; Bankowski K; Seto J; Sawyer WH J Med Chem; 1985 Oct; 28(10):1485-91. PubMed ID: 4045923 [TBL] [Abstract][Full Text] [Related]
17. Identification and characterization of a vasopressin isoreceptor in porcine seminal vesicles. Maggi M; Kassis S; Malozowski S; Guardabasso V; Rodbard D Proc Natl Acad Sci U S A; 1986 Dec; 83(23):8824-8. PubMed ID: 2947237 [TBL] [Abstract][Full Text] [Related]
18. Metabolism of vasopressin, oxytocin and their analogues [Mpa1, D-Arg8]-vasopressin (dDAVP) and [Mpa1, D-Tyr(Et)2, Thr4, Orn8]-oxytocin (antocin) in human kidney and liver homogenates. Fjellestad-Paulsen A; Lundin S Regul Pept; 1996 Nov; 67(1):27-32. PubMed ID: 8952002 [TBL] [Abstract][Full Text] [Related]
19. Hydroosmotic activities of arginine-vasopressins modified either in positions 1, 2 and 4 or at N-terminal extensions. Bakos P; Shakhmatova EI; Ponec J; Alexandrová M; Lichardus B; Lammek B; Rekowski P; Kupryszewski G Gen Physiol Biophys; 1992 Aug; 11(4):359-76. PubMed ID: 1426981 [TBL] [Abstract][Full Text] [Related]
20. [1-(beta-mercapto-beta,beta-cyclopentamethylenepropionic acid),4-valine,-8-D-arginine]vasopressin, a potent and selective inhibitor of the vasopressor response to arginine-vasopressin. Lowbridge J; Manning M; Haldar J; Sawyer WH J Med Chem; 1978 Mar; 21(3):313-5. PubMed ID: 628009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]