These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
404 related articles for article (PubMed ID: 25850678)
1. immunoClust--An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. Sörensen T; Baumgart S; Durek P; Grützkau A; Häupl T Cytometry A; 2015 Jul; 87(7):603-15. PubMed ID: 25850678 [TBL] [Abstract][Full Text] [Related]
2. gEM/GANN: A multivariate computational strategy for auto-characterizing relationships between cellular and clinical phenotypes and predicting disease progression time using high-dimensional flow cytometry data. Tong DL; Ball GR; Pockley AG Cytometry A; 2015 Jul; 87(7):616-23. PubMed ID: 25572884 [TBL] [Abstract][Full Text] [Related]
3. Modeling of inter-sample variation in flow cytometric data with the joint clustering and matching procedure. Lee SX; McLachlan GJ; Pyne S Cytometry A; 2016 Jan; 89(1):30-43. PubMed ID: 26492316 [TBL] [Abstract][Full Text] [Related]
4. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 2: biological evaluation. Mosmann TR; Naim I; Rebhahn J; Datta S; Cavenaugh JS; Weaver JM; Sharma G Cytometry A; 2014 May; 85(5):422-33. PubMed ID: 24532172 [TBL] [Abstract][Full Text] [Related]
5. Automated gating of flow cytometry data via robust model-based clustering. Lo K; Brinkman RR; Gottardo R Cytometry A; 2008 Apr; 73(4):321-32. PubMed ID: 18307272 [TBL] [Abstract][Full Text] [Related]
6. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Weber LM; Robinson MD Cytometry A; 2016 Dec; 89(12):1084-1096. PubMed ID: 27992111 [TBL] [Abstract][Full Text] [Related]
7. Automated analysis of flow cytometric data for measuring neutrophil CD64 expression using a multi-instrument compatible probability state model. Wong L; Hill BL; Hunsberger BC; Bagwell CB; Curtis AD; Davis BH Cytometry B Clin Cytom; 2015; 88(4):227-35. PubMed ID: 25529112 [TBL] [Abstract][Full Text] [Related]
9. Automated flow cytometric analysis across large numbers of samples and cell types. Chen X; Hasan M; Libri V; Urrutia A; Beitz B; Rouilly V; Duffy D; Patin É; Chalmond B; Rogge L; Quintana-Murci L; Albert ML; Schwikowski B; Clin Immunol; 2015 Apr; 157(2):249-60. PubMed ID: 25576660 [TBL] [Abstract][Full Text] [Related]
10. The end of gating? An introduction to automated analysis of high dimensional cytometry data. Mair F; Hartmann FJ; Mrdjen D; Tosevski V; Krieg C; Becher B Eur J Immunol; 2016 Jan; 46(1):34-43. PubMed ID: 26548301 [TBL] [Abstract][Full Text] [Related]
11. Computationally efficient multidimensional analysis of complex flow cytometry data using second order polynomial histograms. Zaunders J; Jing J; Leipold M; Maecker H; Kelleher AD; Koch I Cytometry A; 2016 Jan; 89(1):44-58. PubMed ID: 26097104 [TBL] [Abstract][Full Text] [Related]
12. A computational approach for phenotypic comparisons of cell populations in high-dimensional cytometry data. Platon L; Pejoski D; Gautreau G; Targat B; Le Grand R; Beignon AS; Tchitchek N Methods; 2018 Jan; 132():66-75. PubMed ID: 28917725 [TBL] [Abstract][Full Text] [Related]
13. Frequency difference gating: a multivariate method for identifying subsets that differ between samples. Roederer M; Hardy RR Cytometry; 2001 Sep; 45(1):56-64. PubMed ID: 11598947 [TBL] [Abstract][Full Text] [Related]
14. flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification. Malek M; Taghiyar MJ; Chong L; Finak G; Gottardo R; Brinkman RR Bioinformatics; 2015 Feb; 31(4):606-7. PubMed ID: 25378466 [TBL] [Abstract][Full Text] [Related]
15. Automatically generate two-dimensional gating hierarchy from clustered cytometry data. Yang X; Qiu P Cytometry A; 2018 Oct; 93(10):1039-1050. PubMed ID: 30176185 [TBL] [Abstract][Full Text] [Related]
16. Mapping cell populations in flow cytometry data for cross-sample comparison using the Friedman-Rafsky test statistic as a distance measure. Hsiao C; Liu M; Stanton R; McGee M; Qian Y; Scheuermann RH Cytometry A; 2016 Jan; 89(1):71-88. PubMed ID: 26274018 [TBL] [Abstract][Full Text] [Related]
17. Computational analysis of high-dimensional flow cytometric data for diagnosis and discovery. Aghaeepour N; Brinkman R Curr Top Microbiol Immunol; 2014; 377():159-75. PubMed ID: 23975083 [TBL] [Abstract][Full Text] [Related]
18. Identifying Cell Populations in Flow Cytometry Data Using Phenotypic Signatures. Pouyan MB; Nourani M IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):880-891. PubMed ID: 27076456 [TBL] [Abstract][Full Text] [Related]
19. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: algorithm design. Naim I; Datta S; Rebhahn J; Cavenaugh JS; Mosmann TR; Sharma G Cytometry A; 2014 May; 85(5):408-21. PubMed ID: 24677621 [TBL] [Abstract][Full Text] [Related]
20. Analysis of clinical flow cytometric immunophenotyping data by clustering on statistical manifolds: treating flow cytometry data as high-dimensional objects. Finn WG; Carter KM; Raich R; Stoolman LM; Hero AO Cytometry B Clin Cytom; 2009 Jan; 76(1):1-7. PubMed ID: 18642311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]