These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25850694)

  • 1. Bacterial cellulose-hydroxyapatite composites with osteogenic growth peptide (OGP) or pentapeptide OGP on bone regeneration in critical-size calvarial defect model.
    Pigossi SC; de Oliveira GJ; Finoti LS; Nepomuceno R; Spolidorio LC; Rossa C; Ribeiro SJ; Saska S; Scarel-Caminaga RM
    J Biomed Mater Res A; 2015 Oct; 103(10):3397-406. PubMed ID: 25850694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biopolymer-based membranes associated with osteogenic growth peptide for guided bone regeneration.
    Saska S; Pigossi SC; Oliveira GJPL; Teixeira LN; Capela MV; Gonçalves A; de Oliveira PT; Messaddeq Y; Ribeiro SJL; Gaspar AMM; Marchetto R
    Biomed Mater; 2018 Mar; 13(3):035009. PubMed ID: 29363620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocellulose-collagen-apatite composite associated with osteogenic growth peptide for bone regeneration.
    Saska S; Teixeira LN; de Castro Raucci LMS; Scarel-Caminaga RM; Franchi LP; Dos Santos RA; Santagneli SH; Capela MV; de Oliveira PT; Takahashi CS; Gaspar AMM; Messaddeq Y; Ribeiro SJL; Marchetto R
    Int J Biol Macromol; 2017 Oct; 103():467-476. PubMed ID: 28527999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial cellulose membrane functionalized with hydroxiapatite and anti-bone morphogenetic protein 2: A promising material for bone regeneration.
    Coelho F; Cavicchioli M; Specian SS; Scarel-Caminaga RM; Penteado LA; Medeiros AI; Ribeiro SJL; Capote TSO
    PLoS One; 2019; 14(8):e0221286. PubMed ID: 31425530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering.
    Saska S; Scarel-Caminaga RM; Teixeira LN; Franchi LP; Dos Santos RA; Gaspar AM; de Oliveira PT; Rosa AL; Takahashi CS; Messaddeq Y; Ribeiro SJ; Marchetto R
    J Mater Sci Mater Med; 2012 Sep; 23(9):2253-66. PubMed ID: 22622695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel osteogenic growth peptide C-terminal pentapeptide grafted poly(d,l-lactic acid) improves the proliferation and differentiation of osteoblasts: The potential bone regenerative biomaterial.
    Hou R; Zou Z; Zhang J; Wen C; Li L; Hong Y; Xin J; Wang B; Zhang B
    Int J Biol Macromol; 2018 Nov; 119():874-881. PubMed ID: 30081125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Osteogenic Growth Peptide (OGP) and OGP(10-14) in Bone Regeneration: A Review.
    Pigossi SC; Medeiros MC; Saska S; Cirelli JA; Scarel-Caminaga RM
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27879684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect.
    Rojbani H; Nyan M; Ohya K; Kasugai S
    J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Osteogenic growth peptide regulates proliferation and differentiation of calvarial osteoblast-like cells of rat].
    Xu L; Liang X; Huang J; Dong Q; Xia L; Hu J; Zhang QH; Li XY
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2006 May; 37(3):445-8. PubMed ID: 16761430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gelatin Templated Polypeptide Co-Cross-Linked Hydrogel for Bone Regeneration.
    Qiao Y; Liu X; Zhou X; Zhang H; Zhang W; Xiao W; Pan G; Cui W; Santos HA; Shi Q
    Adv Healthc Mater; 2020 Jan; 9(1):e1901239. PubMed ID: 31814318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo effectiveness of hybrid membranes with osteogenic growth peptide for bone regeneration.
    Oshiro-Junior JA; Barros RM; da Silva CG; de Souza CC; Scardueli CR; Marcantonio CC; da Silva Saches PR; Mendes L; Cilli EM; Marcantonio RAC; Chiavacci LA
    J Tissue Eng Regen Med; 2021 Aug; 15(8):722-731. PubMed ID: 34038031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of new bone guided by implants in a murine calvarial model.
    Freilich M; M Patel C; Wei M; Shafer D; Schleier P; Hortschansky P; Kompali R; Kuhn L
    Bone; 2008 Oct; 43(4):781-8. PubMed ID: 18589010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photofunctionalizing effects of hydroxyapatite combined with TiO
    Kim SY; Bark CW; Van Quy H; Seo SJ; Lim JH; Lee JM; Suh JY; Lee Y; Um HS; Kim YG
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1953-1959. PubMed ID: 30521098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of calvarial bone defects using poly(amino acid)/hydroxyapatite/calcium sulfate composite.
    Fan X; Peng H; Li H; Yan Y
    J Biomater Sci Polym Ed; 2019 Feb; 30(2):107-121. PubMed ID: 30518309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue segregation restores the induction of bone formation by the mammalian transforming growth factor-β(3) in calvarial defects of the non-human primate Papio ursinus.
    Ripamonti U; Klar RM; Parak R; Dickens C; Dix-Peek T; Duarte R
    Biomaterials; 2016 Apr; 86():21-32. PubMed ID: 26874889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the osteoconductive potential of poly(propylene carbonate)/nano-hydroxyapatite composites mimicking the osteogenic niche for bone augmentation.
    Zou Q; Liao J; Li J; Li Y
    J Biomater Sci Polym Ed; 2017 Mar; 28(4):350-364. PubMed ID: 28001498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenic growth peptide modulates fracture callus structural and mechanical properties.
    Gabet Y; Müller R; Regev E; Sela J; Shteyer A; Salisbury K; Chorev M; Bab I
    Bone; 2004 Jul; 35(1):65-73. PubMed ID: 15207742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation and bone formation of various polyethylene glycol hydrogels in acute and chronic sites in mini-pigs.
    Thoma DS; Schneider D; Mir-Mari J; Hämmerle CH; Gemperli AC; Molenberg A; Dard M; Jung RE
    Clin Oral Implants Res; 2014 Apr; 25(4):511-21. PubMed ID: 23758284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human periosteum-derived cells combined with superporous hydroxyapatite blocks used as an osteogenic bone substitute for periodontal regenerative therapy: an animal implantation study using nude mice.
    Kawase T; Okuda K; Kogami H; Nakayama H; Nagata M; Sato T; Wolff LF; Yoshie H
    J Periodontol; 2010 Mar; 81(3):420-7. PubMed ID: 20192869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface immobilization of MEPE peptide onto HA/β-TCP ceramic particles enhances bone regeneration and remodeling.
    Acharya B; Chun SY; Kim SY; Moon C; Shin HI; Park EK
    J Biomed Mater Res B Appl Biomater; 2012 Apr; 100(3):841-9. PubMed ID: 22278974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.