These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25850715)

  • 1. Decreasing Transmembrane Segment Length Greatly Decreases Perfringolysin O Pore Size.
    Lin Q; Wang T; Li H; London E
    J Membr Biol; 2015 Jun; 248(3):517-27. PubMed ID: 25850715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altering hydrophobic sequence lengths shows that hydrophobic mismatch controls affinity for ordered lipid domains (rafts) in the multitransmembrane strand protein perfringolysin O.
    Lin Q; London E
    J Biol Chem; 2013 Jan; 288(2):1340-52. PubMed ID: 23150664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perfringolysin O structure and mechanism of pore formation as a paradigm for cholesterol-dependent cytolysins.
    Johnson BB; Heuck AP
    Subcell Biochem; 2014; 80():63-81. PubMed ID: 24798008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crucial role of perfringolysin O D1 domain in orchestrating structural transitions leading to membrane-perforating pores: a hydrogen-deuterium exchange study.
    Kacprzyk-Stokowiec A; Kulma M; Traczyk G; Kwiatkowska K; Sobota A; Dadlez M
    J Biol Chem; 2014 Oct; 289(41):28738-52. PubMed ID: 25164812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction.
    Nelson LD; Johnson AE; London E
    J Biol Chem; 2008 Feb; 283(8):4632-42. PubMed ID: 18089559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of Cholesterol with Perfringolysin O: What Have We Learned from Functional Analysis?
    Savinov SN; Heuck AP
    Toxins (Basel); 2017 Nov; 9(12):. PubMed ID: 29168745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arresting pore formation of a cholesterol-dependent cytolysin by disulfide trapping synchronizes the insertion of the transmembrane beta-sheet from a prepore intermediate.
    Hotze EM; Wilson-Kubalek EM; Rossjohn J; Parker MW; Johnson AE; Tweten RK
    J Biol Chem; 2001 Mar; 276(11):8261-8. PubMed ID: 11102453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of natural lipid asymmetry upon the conformation of a membrane-inserted protein (perfringolysin O).
    Lin Q; London E
    J Biol Chem; 2014 Feb; 289(9):5467-78. PubMed ID: 24398685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine-tuning of the stability of β-strands by Y181 in perfringolysin O directs the prepore to pore transition.
    Kulma M; Kacprzyk-Stokowiec A; Traczyk G; Kwiatkowska K; Dadlez M
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):110-122. PubMed ID: 30463694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prepore to pore transition of a cholesterol-dependent cytolysin visualized by electron microscopy.
    Dang TX; Hotze EM; Rouiller I; Tweten RK; Wilson-Kubalek EM
    J Struct Biol; 2005 Apr; 150(1):100-8. PubMed ID: 15797734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfringolysin O association with ordered lipid domains: implications for transmembrane protein raft affinity.
    Nelson LD; Chiantia S; London E
    Biophys J; 2010 Nov; 99(10):3255-63. PubMed ID: 21081073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. R468A mutation in perfringolysin O destabilizes toxin structure and induces membrane fusion.
    Kulma M; Kacprzyk-Stokowiec A; Kwiatkowska K; Traczyk G; Sobota A; Dadlez M
    Biochim Biophys Acta Biomembr; 2017 Jun; 1859(6):1075-1088. PubMed ID: 28263714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy.
    Shepard LA; Heuck AP; Hamman BD; Rossjohn J; Parker MW; Ryan KR; Johnson AE; Tweten RK
    Biochemistry; 1998 Oct; 37(41):14563-74. PubMed ID: 9772185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monomer-monomer interactions drive the prepore to pore conversion of a beta-barrel-forming cholesterol-dependent cytolysin.
    Hotze EM; Heuck AP; Czajkowsky DM; Shao Z; Johnson AE; Tweten RK
    J Biol Chem; 2002 Mar; 277(13):11597-605. PubMed ID: 11799121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disulfide-bond scanning reveals assembly state and β-strand tilt angle of the PFO β-barrel.
    Sato TK; Tweten RK; Johnson AE
    Nat Chem Biol; 2013 Jun; 9(6):383-9. PubMed ID: 23563525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational changes that effect oligomerization and initiate pore formation are triggered throughout perfringolysin O upon binding to cholesterol.
    Heuck AP; Savva CG; Holzenburg A; Johnson AE
    J Biol Chem; 2007 Aug; 282(31):22629-37. PubMed ID: 17553799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perfringolysin O: The Underrated Clostridium perfringens Toxin?
    Verherstraeten S; Goossens E; Valgaeren B; Pardon B; Timbermont L; Haesebrouck F; Ducatelle R; Deprez P; Wade KR; Tweten R; Van Immerseel F
    Toxins (Basel); 2015 May; 7(5):1702-21. PubMed ID: 26008232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Cholesterol-dependent Cytolysin Membrane-binding Interface Discriminates Lipid Environments of Cholesterol to Support β-Barrel Pore Insertion.
    Farrand AJ; Hotze EM; Sato TK; Wade KR; Wimley WC; Johnson AE; Tweten RK
    J Biol Chem; 2015 Jul; 290(29):17733-17744. PubMed ID: 26032415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins.
    Shepard LA; Shatursky O; Johnson AE; Tweten RK
    Biochemistry; 2000 Aug; 39(33):10284-93. PubMed ID: 10956018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Intermolecular π-Stacking Interaction Drives Conformational Changes Necessary to β-Barrel Formation in a Pore-Forming Toxin.
    Burns JR; Morton CJ; Parker MW; Tweten RK
    mBio; 2019 Jul; 10(4):. PubMed ID: 31266869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.