These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 25851055)
1. Reagent pencils: a new technique for solvent-free deposition of reagents onto paper-based microfluidic devices. Mitchell HT; Noxon IC; Chaplan CA; Carlton SJ; Liu CH; Ganaja KA; Martinez NW; Immoos CE; Costanzo PJ; Martinez AW Lab Chip; 2015 May; 15(10):2213-20. PubMed ID: 25851055 [TBL] [Abstract][Full Text] [Related]
2. Characterization of Reagent Pencils for Deposition of Reagents onto Paper-Based Microfluidic Devices. Liu CH; Noxon IC; Cuellar LE; Thraen AL; Immoos CE; Martinez AW; Costanzo PJ Micromachines (Basel); 2017 Aug; 8(8):. PubMed ID: 30400433 [TBL] [Abstract][Full Text] [Related]
3. Dry storage of multiple reagent types within a paper microfluidic device for phenylalanine monitoring. Wentland L; Polaski R; Fu E Anal Methods; 2021 Feb; 13(5):660-671. PubMed ID: 33463631 [TBL] [Abstract][Full Text] [Related]
4. Thread/paper- and paper-based microfluidic devices for glucose assays employing artificial neural networks. Lee W; Gonzalez A; Arguelles P; Guevara R; Gonzalez-Guerrero MJ; Gomez FA Electrophoresis; 2018 Jun; 39(12):1443-1451. PubMed ID: 29660155 [TBL] [Abstract][Full Text] [Related]
5. Controlled release of reagents in capillary-driven microfluidics using reagent integrators. Hitzbleck M; Gervais L; Delamarche E Lab Chip; 2011 Aug; 11(16):2680-5. PubMed ID: 21674120 [TBL] [Abstract][Full Text] [Related]
6. Barrier-Free Microfluidic Paper Analytical Devices for Multiplex Colorimetric Detection of Analytes. Chauhan A; Toley BJ Anal Chem; 2021 Jun; 93(25):8954-8961. PubMed ID: 34126741 [TBL] [Abstract][Full Text] [Related]
7. Bio-sample detection on paper-based devices with inkjet printer-sprayed reagents. Liang WH; Chu CH; Yang RJ Talanta; 2015 Dec; 145():6-11. PubMed ID: 26459437 [TBL] [Abstract][Full Text] [Related]
8. Using bioinspired thermally triggered liposomes for high-efficiency mixing and reagent delivery in microfluidic devices. Vreeland WN; Locascio LE Anal Chem; 2003 Dec; 75(24):6906-11. PubMed ID: 14670052 [TBL] [Abstract][Full Text] [Related]
9. High-throughput deposition of chemical reagents via pen-plotting technique for microfluidic paper-based analytical devices. Rahbar M; Nesterenko PN; Paull B; Macka M Anal Chim Acta; 2019 Jan; 1047():115-123. PubMed ID: 30567641 [TBL] [Abstract][Full Text] [Related]
10. Power-free chip enzyme immunoassay for detection of prostate specific antigen (PSA) in serum. Adel Ahmed H; Azzazy HM Biosens Bioelectron; 2013 Nov; 49():478-84. PubMed ID: 23811482 [TBL] [Abstract][Full Text] [Related]
11. Reagent-Pencil and Paper Spray Mass Spectrometry: A Convenient Combination for Selective Analyses in Complex Matrixes. Aquino A; Mayrink Alves Pereira G; Dossi N; Piccin E; Augusti R J Am Soc Mass Spectrom; 2021 Jan; 32(1):281-288. PubMed ID: 33176096 [TBL] [Abstract][Full Text] [Related]
12. Pre-storage of gelified reagents in a lab-on-a-foil system for rapid nucleic acid analysis. Sun Y; Høgberg J; Christine T; Florian L; Monsalve LG; Rodriguez S; Cao C; Wolff A; Ruano-Lopez JM; Bang DD Lab Chip; 2013 Apr; 13(8):1509-14. PubMed ID: 23377124 [TBL] [Abstract][Full Text] [Related]
13. Self-coalescing flows in microfluidics for pulse-shaped delivery of reagents. Gökçe O; Castonguay S; Temiz Y; Gervais T; Delamarche E Nature; 2019 Oct; 574(7777):228-232. PubMed ID: 31597972 [TBL] [Abstract][Full Text] [Related]
14. A hybrid paper and microfluidic chip with electrowetting valves and colorimetric detection. He F; Grimes J; Alcaine SD; Nugen SR Analyst; 2014 Jun; 139(12):3002-8. PubMed ID: 24719901 [TBL] [Abstract][Full Text] [Related]
15. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Srinivasan V; Pamula VK; Fair RB Lab Chip; 2004 Aug; 4(4):310-5. PubMed ID: 15269796 [TBL] [Abstract][Full Text] [Related]
16. Low-cost, high-throughput fabrication of cloth-based microfluidic devices using a photolithographical patterning technique. Wu P; Zhang C Lab Chip; 2015 Mar; 15(6):1598-608. PubMed ID: 25656508 [TBL] [Abstract][Full Text] [Related]
17. An RNA-DNA hybridization assay chip with electrokinetically controlled oil droplet valves for sequential microfluidic operations. Weng X; Jiang H; Chon CH; Chen S; Cao H; Li D J Biotechnol; 2011 Sep; 155(3):330-7. PubMed ID: 21820019 [TBL] [Abstract][Full Text] [Related]
18. Paper Microzone Plates as Analytical Tools for Studying Enzyme Stability: A Case Study on the Stabilization of Horseradish Peroxidase Using Trehalose and SU-8 Epoxy Novolac Resin. Ganaja KA; Chaplan CA; Zhang J; Martinez NW; Martinez AW Anal Chem; 2017 May; 89(10):5333-5341. PubMed ID: 28471642 [TBL] [Abstract][Full Text] [Related]
19. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Yang X; Forouzan O; Brown TP; Shevkoplyas SS Lab Chip; 2012 Jan; 12(2):274-80. PubMed ID: 22094609 [TBL] [Abstract][Full Text] [Related]
20. ELISA-LOC: lab-on-a-chip for enzyme-linked immunodetection. Sun S; Yang M; Kostov Y; Rasooly A Lab Chip; 2010 Aug; 10(16):2093-100. PubMed ID: 20544092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]