These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 25851137)

  • 1. A theoretical approach to the relationship between wettability and surface microstructures of epidermal cells and structured cuticles of flower petals.
    Taneda H; Watanabe-Taneda A; Chhetry R; Ikeda H
    Ann Bot; 2015 May; 115(6):923-37. PubMed ID: 25851137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining the contribution of epidermal cell shape to petal wettability using isogenic Antirrhinum lines.
    Whitney HM; Poetes R; Steiner U; Chittka L; Glover BJ
    PLoS One; 2011 Mar; 6(3):e17576. PubMed ID: 21423738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface microstructures of daisy florets (Asteraceae) and characterization of their anisotropic wetting.
    Koch K; Bennemann M; Bohn HF; Albach DC; Barthlott W
    Bioinspir Biomim; 2013 Sep; 8(3):036005. PubMed ID: 23838014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of petal epidermal micromorphology in Leguminosae and its use as a marker of petal identity.
    Ojeda I; Francisco-Ortega J; Cronk QC
    Ann Bot; 2009 Nov; 104(6):1099-110. PubMed ID: 19789174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of wetting behavior of water drops on single micro-scale roughness surfaces of rose petal effect.
    Lin HP; Chen LJ
    J Colloid Interface Sci; 2021 Dec; 603():539-549. PubMed ID: 34216950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between the velvet-like texture of flower petals and light reflection from epidermal cell surfaces.
    Zhang Y; Sun T; Xie L; Hayashi T; Kawabata S; Li Y
    J Plant Res; 2015 Jul; 128(4):623-32. PubMed ID: 25912473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why do so many petals have conical epidermal cells?
    Whitney HM; Bennett KM; Dorling M; Sandbach L; Prince D; Chittka L; Glover BJ
    Ann Bot; 2011 Sep; 108(4):609-16. PubMed ID: 21470973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) - new design principles for biomimetic materials.
    Schulte AJ; Droste DM; Koch K; Barthlott W
    Beilstein J Nanotechnol; 2011; 2():228-36. PubMed ID: 21977435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Arabidopsis ABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis.
    Panikashvili D; Shi JX; Schreiber L; Aharoni A
    New Phytol; 2011 Apr; 190(1):113-124. PubMed ID: 21232060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connecting the Molecular Structure of Cutin to Ultrastructure and Physical Properties of the Cuticle in Petals of Arabidopsis.
    Mazurek S; Garroum I; Daraspe J; De Bellis D; Olsson V; Mucciolo A; Butenko MA; Humbel BM; Nawrath C
    Plant Physiol; 2017 Feb; 173(2):1146-1163. PubMed ID: 27994007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wax layers on Cosmos bipinnatus petals contribute unequally to total petal water resistance.
    Buschhaus C; Hager D; Jetter R
    Plant Physiol; 2015 Jan; 167(1):80-8. PubMed ID: 25413359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of the rose petal effect over single- and dual-scale roughness surfaces.
    Yeh KY; Cho KH; Yeh YH; Promraksa A; Huang CH; Hsu CC; Chen LJ
    Nanotechnology; 2014 Aug; 25(34):345303. PubMed ID: 25100802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cuticle characteristics and volatile emissions of petals in Antirrhinum majus.
    Goodwin SM; Kolosova N; Kish CM; Wood KV; Dudareva N; Jenks MA
    Physiol Plant; 2003 Mar; 117(3):435-443. PubMed ID: 12654045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructure and optics of the prism-like petal epidermal cells of Eschscholzia californica (California poppy).
    Wilts BD; Rudall PJ; Moyroud E; Gregory T; Ogawa Y; Vignolini S; Steiner U; Glover BJ
    New Phytol; 2018 Aug; 219(3):1124-1133. PubMed ID: 29856474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Buckling as an origin of ordered cuticular patterns in flower petals.
    Antoniou Kourounioti RL; Band LR; Fozard JA; Hampstead A; Lovrics A; Moyroud E; Vignolini S; King JR; Jensen OE; Glover BJ
    J R Soc Interface; 2013 Mar; 10(80):20120847. PubMed ID: 23269848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conical epidermal cells allow bees to grip flowers and increase foraging efficiency.
    Whitney HM; Chittka L; Bruce TJ; Glover BJ
    Curr Biol; 2009 Jun; 19(11):948-53. PubMed ID: 19446458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic analysis of the wetting behavior of dual scale patterned hydrophobic surfaces.
    Sajadinia SH; Sharif F
    J Colloid Interface Sci; 2010 Apr; 344(2):575-83. PubMed ID: 20132948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wettability of Reentrant Surfaces: A Global Energy Approach.
    Silvestrini M; Brito C
    Langmuir; 2017 Oct; 33(43):12535-12545. PubMed ID: 28985080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.