These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 25851167)

  • 1. Isolation and characterization of bacterial strains with the ability to utilize high concentrations of levulinic acid, a platform chemical from inedible biomass.
    Habe H; Sato S; Morita T; Fukuoka T; Kirimura K; Kitamoto D
    Biosci Biotechnol Biochem; 2015; 79(9):1552-5. PubMed ID: 25851167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial production of short-chain organic acids and trehalose from levulinic acid: a potential cellulose-derived building block as a feedstock for microbial production.
    Habe H; Sato S; Morita T; Fukuoka T; Kirimura K; Kitamoto D
    Bioresour Technol; 2015 Feb; 177():381-6. PubMed ID: 25479689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrodialytic separation of levulinic acid catalytically synthesized from woody biomass for use in microbial conversion.
    Habe H; Kondo S; Sato Y; Hori T; Kanno M; Kimura N; Koike H; Kirimura K
    Biotechnol Prog; 2017 Mar; 33(2):448-453. PubMed ID: 27997084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid.
    Girisuta B; Danon B; Manurung R; Janssen LP; Heeres HJ
    Bioresour Technol; 2008 Nov; 99(17):8367-75. PubMed ID: 18417339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and process parameter optimization of Brevibacterium casei for simultaneous bioremediation of hexavalent chromium and pentachlorophenol.
    Verma T; Singh N
    J Basic Microbiol; 2013 Mar; 53(3):277-90. PubMed ID: 22733606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst.
    Ya'aini N; Amin NA; Asmadi M
    Bioresour Technol; 2012 Jul; 116():58-65. PubMed ID: 22609656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass.
    Pileidis FD; Titirici MM
    ChemSusChem; 2016 Mar; 9(6):562-82. PubMed ID: 26847212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of cyclohexylamine by Brevibacterium oxydans IH-35A.
    Iwaki H; Shimizu M; Tokuyama T; Hasegawa Y
    Appl Environ Microbiol; 1999 May; 65(5):2232-4. PubMed ID: 10224025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of levulinic acid and furfural production from Miscanthus × giganteus.
    Dussan K; Girisuta B; Haverty D; Leahy JJ; Hayes MH
    Bioresour Technol; 2013 Dec; 149():216-24. PubMed ID: 24103645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system.
    Li J; Jiang Z; Hu L; Hu C
    ChemSusChem; 2014 Sep; 7(9):2482-8. PubMed ID: 25045141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth-coupled bioconversion of levulinic acid to butanone.
    Mehrer CR; Rand JM; Incha MR; Cook TB; Demir B; Motagamwala AH; Kim D; Dumesic JA; Pfleger BF
    Metab Eng; 2019 Sep; 55():92-101. PubMed ID: 31226347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of levulinic acid from macroalgae by hydrothermal conversion with ionic resin catalyst.
    Park Y; Jeong GT
    Bioresour Technol; 2024 Jun; 402():130778. PubMed ID: 38701985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel approach to biphasic strategy for intensification of the hydrothermal process to give levulinic acid: Use of an organic non-solvent.
    Licursi D; Antonetti C; Parton R; Raspolli Galletti AM
    Bioresour Technol; 2018 Sep; 264():180-189. PubMed ID: 29803088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterisation of 1-alkyl-3-methylimidazolium chloride ionic liquid-tolerant and biodegrading marine bacteria.
    Megaw J; Busetti A; Gilmore BF
    PLoS One; 2013; 8(4):e60806. PubMed ID: 23560109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production and characterization of poly-beta-hydroxyalkanoate copolymers from Burkholderia cepacia utilizing xylose and levulinic acid.
    Keenan TM; Tanenbaum SW; Stipanovic AJ; Nakas JP
    Biotechnol Prog; 2004; 20(6):1697-704. PubMed ID: 15575701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-pot synthesis of levulinic acid from cellulose in ionic liquids.
    Shen Y; Sun JK; Yi YX; Wang B; Xu F; Sun RC
    Bioresour Technol; 2015 Sep; 192():812-6. PubMed ID: 26055443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of ochratoxin a by Brevibacterium species.
    Rodriguez H; Reveron I; Doria F; Costantini A; De Las Rivas B; Muňoz R; Garcia-Moruno E
    J Agric Food Chem; 2011 Oct; 59(19):10755-60. PubMed ID: 21892825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The initial metabolic conversion of levulinic acid in Cupriavidus necator.
    Jaremko M; Yu J
    J Biotechnol; 2011 Sep; 155(3):293-8. PubMed ID: 21821073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycerine and levulinic acid: renewable co-substrates for the fermentative synthesis of short-chain poly(hydroxyalkanoate) biopolymers.
    Ashby RD; Solaiman DK; Strahan GD; Zhu C; Tappel RC; Nomura CT
    Bioresour Technol; 2012 Aug; 118():272-80. PubMed ID: 22705534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient, chemical-catalytic approach to the production of 3-hydroxypropanoic acid by oxidation of biomass-derived levulinic acid with hydrogen peroxide.
    Wu L; Dutta S; Mascal M
    ChemSusChem; 2015 Apr; 8(7):1167-9. PubMed ID: 25736835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.