These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 25851269)
1. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue. Gu H; Zhang J; Bao J Biotechnol Bioeng; 2015 Sep; 112(9):1770-82. PubMed ID: 25851269 [TBL] [Abstract][Full Text] [Related]
2. Inhibition analysis of inhibitors derived from lignocellulose pretreatment on the metabolic activity of Zymomonas mobilis biofilm and planktonic cells and the proteomic responses. Todhanakasem T; Yodsanga S; Sowatad A; Kanokratana P; Thanonkeo P; Champreda V Biotechnol Bioeng; 2018 Jan; 115(1):70-81. PubMed ID: 28892134 [TBL] [Abstract][Full Text] [Related]
3. Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass. Zhao N; Bai Y; Liu CG; Zhao XQ; Xu JF; Bai FW Biotechnol J; 2014 Mar; 9(3):362-71. PubMed ID: 24357469 [TBL] [Abstract][Full Text] [Related]
4. Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues. Gu H; Zhang J; Bao J Bioresour Technol; 2014 Apr; 157():6-13. PubMed ID: 24518544 [TBL] [Abstract][Full Text] [Related]
5. Kinase expression enhances phenolic aldehydes conversion and ethanol fermentability of Zymomonas mobilis. Yi X; Wu J; Jiang H; Zhao Y; Mei J Bioprocess Biosyst Eng; 2022 Aug; 45(8):1319-1329. PubMed ID: 35786774 [TBL] [Abstract][Full Text] [Related]
6. Expressing an oxidative dehydrogenase gene in ethanologenic strain Zymomonas mobilis promotes the cellulosic ethanol fermentability. Yi X; Gao Q; Bao J J Biotechnol; 2019 Sep; 303():1-7. PubMed ID: 31310781 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment. Yi X; Gu H; Gao Q; Liu ZL; Bao J Biotechnol Biofuels; 2015; 8():153. PubMed ID: 26396591 [TBL] [Abstract][Full Text] [Related]
8. Increasing cellulosic ethanol production by enhancing phenolic tolerance of Zymomonas mobilis in adaptive evolution. Yan Z; Zhang J; Bao J Bioresour Technol; 2021 Jun; 329():124926. PubMed ID: 33684841 [TBL] [Abstract][Full Text] [Related]
9. Improvement of ethanol productivity and energy efficiency by degradation of inhibitors using recombinant Zymomonas mobilis (pHW20a-fdh). Dong HW; Fan LQ; Luo Z; Zhong JJ; Ryu DD; Bao J Biotechnol Bioeng; 2013 Sep; 110(9):2395-404. PubMed ID: 23475631 [TBL] [Abstract][Full Text] [Related]
10. Impact of hfq and sigE on the tolerance of Zymomonas mobilis ZM4 to furfural and acetic acid stresses. Nouri H; Moghimi H; Marashi SA; Elahi E PLoS One; 2020; 15(10):e0240330. PubMed ID: 33035245 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of Tolerance to the Lignin-Derived Inhibitor Yan Z; Gao X; Gao Q; Bao J Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492664 [No Abstract] [Full Text] [Related]
12. Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms. Zhang J; Lynd LR Biotechnol Bioeng; 2010 Oct; 107(2):235-44. PubMed ID: 20506488 [TBL] [Abstract][Full Text] [Related]
13. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. Yang S; Pelletier DA; Lu TY; Brown SD BMC Microbiol; 2010 May; 10():135. PubMed ID: 20459639 [TBL] [Abstract][Full Text] [Related]
14. Overexpression of Dioxygenase Encoding Gene Accelerates the Phenolic Aldehyde Conversion and Ethanol Fermentability of Zymomonas mobilis. Yi X; Mei J; Lin L; Wang W Appl Biochem Biotechnol; 2021 Sep; 193(9):3017-3027. PubMed ID: 33826067 [TBL] [Abstract][Full Text] [Related]
15. Engineered Zymomonas mobilis for salt tolerance using EZ-Tn5-based transposon insertion mutagenesis system. Wang JL; Wu B; Qin H; You Y; Liu S; Shui ZX; Tan FR; Wang YW; Zhu QL; Li YB; Ruan ZY; Ma KD; Dai LC; Hu GQ; He MX Microb Cell Fact; 2016 Jun; 15(1):101. PubMed ID: 27287016 [TBL] [Abstract][Full Text] [Related]
16. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors. Shui ZX; Qin H; Wu B; Ruan ZY; Wang LS; Tan FR; Wang JL; Tang XY; Dai LC; Hu GQ; He MX Appl Microbiol Biotechnol; 2015 Jul; 99(13):5739-48. PubMed ID: 25935346 [TBL] [Abstract][Full Text] [Related]
17. Transporter proteins in Zymomonas mobilis contribute to the tolerance of lignocellulose-derived phenolic aldehyde inhibitors. Yi X; Lin L; Mei J; Wang W Bioprocess Biosyst Eng; 2021 Sep; 44(9):1875-1882. PubMed ID: 33839896 [TBL] [Abstract][Full Text] [Related]
18. An alternative feedstock of corn meal for industrial fuel ethanol production: delignified corncob residue. Lei C; Zhang J; Xiao L; Bao J Bioresour Technol; 2014 Sep; 167():555-9. PubMed ID: 25027810 [TBL] [Abstract][Full Text] [Related]
19. Industrial robustness linked to the gluconolactonase from Zymomonas mobilis. Alvin A; Kim J; Jeong GT; Tsang YF; Kwon EE; Neilan BA; Jeon YJ Appl Microbiol Biotechnol; 2017 Jun; 101(12):5089-5099. PubMed ID: 28341886 [TBL] [Abstract][Full Text] [Related]
20. Improving cellulosic ethanol fermentability of Zymomonas mobilis by overexpression of sodium ion tolerance gene ZMO0119. Gao X; Gao Q; Bao J J Biotechnol; 2018 Sep; 282():32-37. PubMed ID: 29807049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]