These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25851420)

  • 1. Dual Element Intercalation into 2D Layered Bi₂Se₃ Nanoribbons.
    Chen KP; Chung FR; Wang M; Koski KJ
    J Am Chem Soc; 2015 Apr; 137(16):5431-7. PubMed ID: 25851420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-density chemical intercalation of zero-valent copper into Bi2Se3 nanoribbons.
    Koski KJ; Cha JJ; Reed BW; Wessells CD; Kong D; Cui Y
    J Am Chem Soc; 2012 May; 134(18):7584-7. PubMed ID: 22524598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons.
    Koski KJ; Wessells CD; Reed BW; Cha JJ; Kong D; Cui Y
    J Am Chem Soc; 2012 Aug; 134(33):13773-9. PubMed ID: 22830589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Control of Copper Intercalation into Nanoscale Bi
    Zhang J; Sun J; Li Y; Shi F; Cui Y
    Nano Lett; 2017 Mar; 17(3):1741-1747. PubMed ID: 28218538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intercalated Iron Chalcogenides: Phase Separation Phenomena and Superconducting Properties.
    Krzton-Maziopa A
    Front Chem; 2021; 9():640361. PubMed ID: 34239856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polytypic phase transitions in metal intercalated Bi
    Wang M; Koski KJ
    J Phys Condens Matter; 2016 Dec; 28(49):494002. PubMed ID: 27731305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible chemochromic MoO3 nanoribbons through zerovalent metal intercalation.
    Wang M; Koski KJ
    ACS Nano; 2015 Mar; 9(3):3226-33. PubMed ID: 25734624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layered Intercalation Materials.
    Zhou J; Lin Z; Ren H; Duan X; Shakir I; Huang Y; Duan X
    Adv Mater; 2021 Jun; 33(25):e2004557. PubMed ID: 33984164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional layered chalcogenides: from rational synthesis to property control via orbital occupation and electron filling.
    Yuan H; Wang H; Cui Y
    Acc Chem Res; 2015 Jan; 48(1):81-90. PubMed ID: 25553585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic-scale clarification of structural transition of MoS₂ upon sodium intercalation.
    Wang X; Shen X; Wang Z; Yu R; Chen L
    ACS Nano; 2014 Nov; 8(11):11394-400. PubMed ID: 25363475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering covalently bonded 2D layered materials by self-intercalation.
    Zhao X; Song P; Wang C; Riis-Jensen AC; Fu W; Deng Y; Wan D; Kang L; Ning S; Dan J; Venkatesan T; Liu Z; Zhou W; Thygesen KS; Luo X; Pennycook SJ; Loh KP
    Nature; 2020 May; 581(7807):171-177. PubMed ID: 32405019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-crystal-to-single-crystal intercalation of a low-bandgap superatomic crystal.
    O'Brien ES; Trinh MT; Kann RL; Chen J; Elbaz GA; Masurkar A; Atallah TL; Paley MV; Patel N; Paley DW; Kymissis I; Crowther AC; Millis AJ; Reichman DR; Zhu XY; Roy X
    Nat Chem; 2017 Dec; 9(12):1170-1174. PubMed ID: 29168490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Imaging of 2D and 3D Temperature Distribution: Coating of Metal-Ion-Intercalated Organic Layered Composites with Tunable Stimuli-Responsive Properties.
    Takeuchi M; Imai H; Oaki Y
    ACS Appl Mater Interfaces; 2017 May; 9(19):16546-16552. PubMed ID: 28448112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epitaxial graphene/silicon carbide intercalation: a minireview on graphene modulation and unique 2D materials.
    Briggs N; Gebeyehu ZM; Vera A; Zhao T; Wang K; De La Fuente Duran A; Bersch B; Bowen T; Knappenberger KL; Robinson JA
    Nanoscale; 2019 Sep; 11(33):15440-15447. PubMed ID: 31393495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide.
    Lukatskaya MR; Mashtalir O; Ren CE; Dall'Agnese Y; Rozier P; Taberna PL; Naguib M; Simon P; Barsoum MW; Gogotsi Y
    Science; 2013 Sep; 341(6153):1502-5. PubMed ID: 24072919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase and Composition Engineering of Self-Intercalated 2D Metallic Tantalum Sulfide for Second-Harmonic Generation.
    Han Z; Han X; Wu S; Zhang Q; Hu W; Meng Y; Liang Y; Hu J; Li L; Zhang Q; Zhang Y; Zhao X; Geng D; Hu W
    ACS Nano; 2024 Feb; 18(8):6256-6265. PubMed ID: 38354399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism Regulating Self-Intercalation in Layered Materials.
    Zhang P; Xue M; Chen C; Guo W; Zhang Z
    Nano Lett; 2023 Apr; 23(8):3623-3629. PubMed ID: 37043360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A prospective overview of the potential of fluorofullerenes as host materials for intercalation chemistry.
    Claves D
    J Phys Chem B; 2005 Jun; 109(25):12399-405. PubMed ID: 16852534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intercalation and flexibility chemistries of soft layered materials.
    Oaki Y
    Chem Commun (Camb); 2020 Nov; 56(86):13069-13081. PubMed ID: 33021619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hafnium, Titanium, and Zirconium Intercalation in 2D Layered Nanomaterials.
    Huynh V; Rivera KR; Teoh T; Chen E; Ura J; Koski KJ
    ACS Nanosci Au; 2023 Dec; 3(6):475-481. PubMed ID: 38144706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.