BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25851544)

  • 1. Clinical-scale purification of pluripotent stem cell derivatives for cell-based therapies.
    Rodrigues GM; Rodrigues CA; Fernandes TG; Diogo MM; Cabral JM
    Biotechnol J; 2015 Aug; 10(8):1103-14. PubMed ID: 25851544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A massive suspension culture system with metabolic purification for human pluripotent stem cell-derived cardiomyocytes.
    Hemmi N; Tohyama S; Nakajima K; Kanazawa H; Suzuki T; Hattori F; Seki T; Kishino Y; Hirano A; Okada M; Tabei R; Ohno R; Fujita C; Haruna T; Yuasa S; Sano M; Fujita J; Fukuda K
    Stem Cells Transl Med; 2014 Dec; 3(12):1473-83. PubMed ID: 25355733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current Strategies and Challenges for Purification of Cardiomyocytes Derived from Human Pluripotent Stem Cells.
    Ban K; Bae S; Yoon YS
    Theranostics; 2017; 7(7):2067-2077. PubMed ID: 28638487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The safety of human pluripotent stem cells in clinical treatment.
    Simonson OE; Domogatskaya A; Volchkov P; Rodin S
    Ann Med; 2015; 47(5):370-80. PubMed ID: 26140342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process engineering of human pluripotent stem cells for clinical application.
    Serra M; Brito C; Correia C; Alves PM
    Trends Biotechnol; 2012 Jun; 30(6):350-9. PubMed ID: 22541338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Haematopoietic developmental potential of human pluripotent stem cell lines.
    Tesařová L; Simara P; Stejskal S; Koutná I
    Folia Biol (Praha); 2014; 60 Suppl 1():90-4. PubMed ID: 25369348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable propagation of human embryonic and induced pluripotent stem cells on decellularized human substrates.
    Abraham S; Sheridan SD; Miller B; Rao RR
    Biotechnol Prog; 2010; 26(4):1126-34. PubMed ID: 20730767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies.
    Abbasalizadeh S; Baharvand H
    Biotechnol Adv; 2013 Dec; 31(8):1600-23. PubMed ID: 23962714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lessons from the heart: mirroring electrophysiological characteristics during cardiac development to in vitro differentiation of stem cell derived cardiomyocytes.
    van den Heuvel NH; van Veen TA; Lim B; Jonsson MK
    J Mol Cell Cardiol; 2014 Feb; 67():12-25. PubMed ID: 24370890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo evaluation of putative hematopoietic stem cells derived from human pluripotent stem cells.
    Hexum MK; Tian X; Kaufman DS
    Methods Mol Biol; 2011; 767():433-47. PubMed ID: 21822894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated platform for production and purification of human pluripotent stem cell-derived neural precursors.
    Rodrigues GM; Matos AF; Fernandes TG; Rodrigues CA; Peitz M; Haupt S; Diogo MM; Brüstle O; Cabral JM
    Stem Cell Rev Rep; 2014 Apr; 10(2):151-61. PubMed ID: 24221956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards.
    Martin RM; Fowler JL; Cromer MK; Lesch BJ; Ponce E; Uchida N; Nishimura T; Porteus MH; Loh KM
    Nat Commun; 2020 Jun; 11(1):2713. PubMed ID: 32483127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of an NAD⁺ salvage pathway provides efficient and selective toxicity to human pluripotent stem cells.
    Kropp EM; Oleson BJ; Broniowska KA; Bhattacharya S; Chadwick AC; Diers AR; Hu Q; Sahoo D; Hogg N; Boheler KR; Corbett JA; Gundry RL
    Stem Cells Transl Med; 2015 May; 4(5):483-93. PubMed ID: 25834119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression.
    Wang J; Singh M; Sun C; Besser D; Prigione A; Ivics Z; Hurst LD; Izsvák Z
    Nat Protoc; 2016 Feb; 11(2):327-46. PubMed ID: 26797457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunophenotyping of Live Human Pluripotent Stem Cells by Flow Cytometry.
    Riordon DR; Boheler KR
    Methods Mol Biol; 2018; 1722():127-149. PubMed ID: 29264803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the human pluripotent stem cell microenvironment to direct cell fate.
    Hazeltine LB; Selekman JA; Palecek SP
    Biotechnol Adv; 2013 Nov; 31(7):1002-19. PubMed ID: 23510904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Culturing human pluripotent stem cells for regenerative medicine.
    Ozawa H; Matsumoto T; Nakagawa M
    Expert Opin Biol Ther; 2023; 23(6):479-489. PubMed ID: 37345510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Tumorigenic Potential of Human Pluripotent Stem Cells.
    Lezmi E; Benvenisty N
    Stem Cells Transl Med; 2022 Aug; 11(8):791-796. PubMed ID: 35679163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New medium used in the differentiation of human pluripotent stem cells to retinal cells is comparable to fetal human eye tissue.
    Wang X; Xiong K; Lin C; Lv L; Chen J; Xu C; Wang S; Gu D; Zheng H; Yu H; Li Y; Xiao H; Zhou G
    Biomaterials; 2015 Jun; 53():40-9. PubMed ID: 25890705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tumorigenic potential of pluripotent stem cells: What can we do to minimize it?
    Peterson SE; Garitaonandia I; Loring JF
    Bioessays; 2016 Jul; 38 Suppl 1():S86-95. PubMed ID: 27417126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.