These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25851589)

  • 21. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.
    Xu C; Hong J; Ren Y; Wang Q; Yuan X
    Environ Sci Pollut Res Int; 2015 Aug; 22(16):12384-95. PubMed ID: 25903190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions.
    Zhang Y; Jacob DJ; Horowitz HM; Chen L; Amos HM; Krabbenhoft DP; Slemr F; St Louis VL; Sunderland EM
    Proc Natl Acad Sci U S A; 2016 Jan; 113(3):526-31. PubMed ID: 26729866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synergistic mercury removal by conventional pollutant control strategies for coal-fired power plants in China.
    Wang S; Zhang L; Wu Y; Ancora MP; Zhao Y; Hao J
    J Air Waste Manag Assoc; 2010 Jun; 60(6):722-30. PubMed ID: 20564998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atmospheric emissions of F, As, Se, Hg, and Sb from coal-fired power and heat generation in China.
    Chen J; Liu G; Kang Y; Wu B; Sun R; Zhou C; Wu D
    Chemosphere; 2013 Feb; 90(6):1925-32. PubMed ID: 23149189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mercury in Indian Thermal Coals.
    Das TB; Senapati RN; Agarwalla H
    Bull Environ Contam Toxicol; 2020 Sep; 105(3):502-512. PubMed ID: 32728825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two decades of changing anthropogenic mercury emissions in Australia: inventory development, trends, and atmospheric implications.
    MacFarlane S; Fisher JA; Horowitz HM; Shah V
    Environ Sci Process Impacts; 2022 Sep; 24(9):1474-1493. PubMed ID: 35603632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Local deposition of mercury in topsoils around coal-fired power plants: is it always true?
    Rodriguez Martin JA; Nanos N; Grigoratos T; Carbonell G; Samara C
    Environ Sci Pollut Res Int; 2014 Sep; 21(17):10205-14. PubMed ID: 24756681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Development of mercury emission inventory from coal combustion in China].
    Jiang JK; Hao JM; Wu Y; Streets DG; Duan L; Tian HZ
    Huan Jing Ke Xue; 2005 Mar; 26(2):34-9. PubMed ID: 16004296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emissions of mercury and other trace elements from coal-fired power plants in Japan.
    Ito S; Yokoyama T; Asakura K
    Sci Total Environ; 2006 Sep; 368(1):397-402. PubMed ID: 16225907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mercury Pollution from Coal-Fired Power Plants: A Critical Analysis of the Australian Regulatory Response to Public Health Risks.
    Bramwell G; Wilson F; Faunce T
    J Law Med; 2018 Dec; 26(2):480-487. PubMed ID: 30574731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Highly Resolved Mercury Emission Inventory of Chinese Coal-Fired Power Plants.
    Liu K; Wang S; Wu Q; Wang L; Ma Q; Zhang L; Li G; Tian H; Duan L; Hao J
    Environ Sci Technol; 2018 Feb; 52(4):2400-2408. PubMed ID: 29320854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.
    Ancora MP; Zhang L; Wang S; Schreifels J; Hao J
    J Environ Sci (China); 2015 Jul; 33():125-34. PubMed ID: 26141885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Current Emissions and Future Mitigation Pathways of Coal-Fired Power Plants in China from 2010 to 2030.
    Tong D; Zhang Q; Liu F; Geng G; Zheng Y; Xue T; Hong C; Wu R; Qin Y; Zhao H; Yan L; He K
    Environ Sci Technol; 2018 Nov; 52(21):12905-12914. PubMed ID: 30249091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of costs associated with atmospheric mercury emission reductions from coal combustion in China in 2010 and projections for 2020.
    Zhang Y; Ye X; Yang T; Li J; Chen L; Zhang W; Wang X
    Sci Total Environ; 2018 Jan; 610-611():796-801. PubMed ID: 28826117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.
    Tang S; Feng X; Qiu J; Yin G; Yang Z
    Environ Res; 2007 Oct; 105(2):175-82. PubMed ID: 17517388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bi-decadal trend of atmospheric emissions from thermal power plants in Mainland Southeast Asia: Implications on acid deposition and climate change Mitigation.
    Ha Chi NN; Kim Oanh NT; Winijkul E; Xue W; Nguyen LT
    J Environ Manage; 2023 Dec; 348():119252. PubMed ID: 37864944
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mercury emissions from coal-fired power stations: The current state of the art in the Netherlands.
    Meij R; te Winkel H
    Sci Total Environ; 2006 Sep; 368(1):393-6. PubMed ID: 16289297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions.
    Muntean M; Janssens-Maenhout G; Song S; Selin NE; Olivier JG; Guizzardi D; Maas R; Dentener F
    Sci Total Environ; 2014 Oct; 494-495():337-50. PubMed ID: 25068706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Projections of global mercury emissions in 2050.
    Streets DG; Zhang Q; Wu Y
    Environ Sci Technol; 2009 Apr; 43(8):2983-8. PubMed ID: 19475981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mercury Benefits of Climate Policy in China: Addressing the Paris Agreement and the Minamata Convention Simultaneously.
    Mulvaney KM; Selin NE; Giang A; Muntean M; Li CT; Zhang D; Angot H; Thackray CP; Karplus VJ
    Environ Sci Technol; 2020 Feb; 54(3):1326-1335. PubMed ID: 31899622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.