These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 25851718)
1. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase. Yu L; Zhao J; Xu M; Dong J; Varghese S; Yu M; Tang IC; Yang ST Appl Microbiol Biotechnol; 2015 Jun; 99(11):4917-30. PubMed ID: 25851718 [TBL] [Abstract][Full Text] [Related]
2. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose. Yu L; Xu M; Tang IC; Yang ST Biotechnol Bioeng; 2015 Oct; 112(10):2134-41. PubMed ID: 25894463 [TBL] [Abstract][Full Text] [Related]
3. Metabolic process engineering of Clostridium tyrobutyricum Δack-adhE2 for enhanced n-butanol production from glucose: effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics. Du Y; Jiang W; Yu M; Tang IC; Yang ST Biotechnol Bioeng; 2015 Apr; 112(4):705-15. PubMed ID: 25363722 [TBL] [Abstract][Full Text] [Related]
4. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from maltose and soluble starch by overexpressing α-glucosidase. Yu L; Xu M; Tang IC; Yang ST Appl Microbiol Biotechnol; 2015 Jul; 99(14):6155-65. PubMed ID: 26002632 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in n-butanol and butyrate production using engineered Clostridium tyrobutyricum. Bao T; Feng J; Jiang W; Fu H; Wang J; Yang ST World J Microbiol Biotechnol; 2020 Aug; 36(9):138. PubMed ID: 32794091 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from sugarcane juice. Zhang J; Yu L; Xu M; Yang ST; Yan Q; Lin M; Tang IC Appl Microbiol Biotechnol; 2017 May; 101(10):4327-4337. PubMed ID: 28238080 [TBL] [Abstract][Full Text] [Related]
7. Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum. Yu M; Du Y; Jiang W; Chang WL; Yang ST; Tang IC Appl Microbiol Biotechnol; 2012 Jan; 93(2):881-9. PubMed ID: 22139042 [TBL] [Abstract][Full Text] [Related]
8. Comparative proteomics analysis of high n-butanol producing metabolically engineered Clostridium tyrobutyricum. Ma C; Kojima K; Xu N; Mobley J; Zhou L; Yang ST; Liu XM J Biotechnol; 2015 Jan; 193():108-19. PubMed ID: 25449011 [TBL] [Abstract][Full Text] [Related]
9. Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production. Lee JY; Jang YS; Lee J; Papoutsakis ET; Lee SY Biotechnol J; 2009 Oct; 4(10):1432-40. PubMed ID: 19830716 [TBL] [Abstract][Full Text] [Related]
10. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Yu M; Zhang Y; Tang IC; Yang ST Metab Eng; 2011 Jul; 13(4):373-82. PubMed ID: 21530675 [TBL] [Abstract][Full Text] [Related]
11. New insights into the butyric acid metabolism of Clostridium acetobutylicum. Lehmann D; Radomski N; Lütke-Eversloh T Appl Microbiol Biotechnol; 2012 Dec; 96(5):1325-39. PubMed ID: 22576943 [TBL] [Abstract][Full Text] [Related]
12. n-Butanol production from sucrose and sugarcane juice by engineered Clostridium tyrobutyricum overexpressing sucrose catabolism genes and adhE2. Zhang J; Yu L; Lin M; Yan Q; Yang ST Bioresour Technol; 2017 Jun; 233():51-57. PubMed ID: 28258996 [TBL] [Abstract][Full Text] [Related]
13. Modifying the product pattern of Clostridium acetobutylicum: physiological effects of disrupting the acetate and acetone formation pathways. Lehmann D; Hönicke D; Ehrenreich A; Schmidt M; Weuster-Botz D; Bahl H; Lütke-Eversloh T Appl Microbiol Biotechnol; 2012 May; 94(3):743-54. PubMed ID: 22246530 [TBL] [Abstract][Full Text] [Related]
14. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations. Sillers R; Al-Hinai MA; Papoutsakis ET Biotechnol Bioeng; 2009 Jan; 102(1):38-49. PubMed ID: 18726959 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid. Jang YS; Woo HM; Im JA; Kim IH; Lee SY Appl Microbiol Biotechnol; 2013 Nov; 97(21):9355-63. PubMed ID: 24013291 [TBL] [Abstract][Full Text] [Related]
16. Deciphering Clostridium tyrobutyricum Metabolism Based on the Whole-Genome Sequence and Proteome Analyses. Lee J; Jang YS; Han MJ; Kim JY; Lee SY mBio; 2016 Jun; 7(3):. PubMed ID: 27302759 [TBL] [Abstract][Full Text] [Related]
17. Enhanced robustness in acetone-butanol-ethanol fermentation with engineered Clostridium beijerinckii overexpressing adhE2 and ctfAB. Lu C; Yu L; Varghese S; Yu M; Yang ST Bioresour Technol; 2017 Nov; 243():1000-1008. PubMed ID: 28747008 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production with high butyrate/acetate ratio. Suo Y; Ren M; Yang X; Liao Z; Fu H; Wang J Appl Microbiol Biotechnol; 2018 May; 102(10):4511-4522. PubMed ID: 29627851 [TBL] [Abstract][Full Text] [Related]
20. Small and Low but Potent: the Complex Regulatory Role of the Small RNA SolB in Solventogenesis in Clostridium acetobutylicum. Jones AJ; Fast AG; Clupper M; Papoutsakis ET Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]