BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 25851905)

  • 1. Organization of Subunits in the Membrane Domain of the Bovine F-ATPase Revealed by Covalent Cross-linking.
    Lee J; Ding S; Walpole TB; Holding AN; Montgomery MG; Fearnley IM; Walker JE
    J Biol Chem; 2015 May; 290(21):13308-20. PubMed ID: 25851905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase.
    He J; Carroll J; Ding S; Fearnley IM; Walker JE
    Proc Natl Acad Sci U S A; 2017 Aug; 114(34):9086-9091. PubMed ID: 28784775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures and interactions of proteins involved in the coupling function of the protonmotive F(o)F(1)-ATP synthase.
    Gaballo A; Zanotti F; Papa S
    Curr Protein Pept Sci; 2002 Aug; 3(4):451-60. PubMed ID: 12370007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of the membrane domain of ATP synthase in human mitochondria.
    He J; Ford HC; Carroll J; Douglas C; Gonzales E; Ding S; Fearnley IM; Walker JE
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):2988-2993. PubMed ID: 29440398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the F1-binding domain of the stator of bovine F1Fo-ATPase and how it binds an alpha-subunit.
    Carbajo RJ; Kellas FA; Runswick MJ; Montgomery MG; Walker JE; Neuhaus D
    J Mol Biol; 2005 Aug; 351(4):824-38. PubMed ID: 16045926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of the central stalk in bovine F(1)-ATPase at 2.4 A resolution.
    Gibbons C; Montgomery MG; Leslie AG; Walker JE
    Nat Struct Biol; 2000 Nov; 7(11):1055-61. PubMed ID: 11062563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase.
    He J; Ford HC; Carroll J; Ding S; Fearnley IM; Walker JE
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3409-3414. PubMed ID: 28289229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of the peripheral stalk of ATP synthase in human mitochondria.
    He J; Carroll J; Ding S; Fearnley IM; Montgomery MG; Walker JE
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29602-29608. PubMed ID: 33168734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistence of the permeability transition pore in human mitochondria devoid of an assembled ATP synthase.
    Carroll J; He J; Ding S; Fearnley IM; Walker JE
    Proc Natl Acad Sci U S A; 2019 Jun; 116(26):12816-12821. PubMed ID: 31213546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of ATP synthase from Paracoccus denitrificans determined by X-ray crystallography at 4.0 Å resolution.
    Morales-Rios E; Montgomery MG; Leslie AG; Walker JE
    Proc Natl Acad Sci U S A; 2015 Oct; 112(43):13231-6. PubMed ID: 26460036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural organization of mitochondrial ATP synthase.
    Wittig I; Schägger H
    Biochim Biophys Acta; 2008; 1777(7-8):592-8. PubMed ID: 18485888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the dimeric ATP synthase from bovine mitochondria.
    Spikes TE; Montgomery MG; Walker JE
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23519-23526. PubMed ID: 32900941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Location of subunit d in the peripheral stalk of the ATP synthase from Saccharomyces cerevisiae.
    Bueler SA; Rubinstein JL
    Biochemistry; 2008 Nov; 47(45):11804-10. PubMed ID: 18937496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How the N-terminal domain of the OSCP subunit of bovine F1Fo-ATP synthase interacts with the N-terminal region of an alpha subunit.
    Carbajo RJ; Kellas FA; Yang JC; Runswick MJ; Montgomery MG; Walker JE; Neuhaus D
    J Mol Biol; 2007 Apr; 368(2):310-8. PubMed ID: 17355883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The peripheral stalk of the mitochondrial ATP synthase.
    Walker JE; Dickson VK
    Biochim Biophys Acta; 2006; 1757(5-6):286-96. PubMed ID: 16697972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of the membrane extrinsic region of bovine ATP synthase.
    Rees DM; Leslie AG; Walker JE
    Proc Natl Acad Sci U S A; 2009 Dec; 106(51):21597-601. PubMed ID: 19995987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-neighbor interactions of the membrane-embedded subunits of the mitochondrial ATP synthase of a chlorophycean alga.
    Sánchez-Vásquez L; Vázquez-Acevedo M; de la Mora J; Vega-deLuna F; Cardol P; Remacle C; Dreyfus G; González-Halphen D
    Biochim Biophys Acta Bioenerg; 2017 Jul; 1858(7):497-509. PubMed ID: 28472636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological and functional study of subunit h of the F1Fo ATP synthase complex in yeast Saccharomyces cerevisiae.
    Fronzes R; Chaignepain S; Bathany K; Giraud MF; Arselin G; Schmitter JM; Dautant A; Velours J; Brèthes D
    Biochemistry; 2003 Oct; 42(41):12038-49. PubMed ID: 14556635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotor/Stator interactions of the epsilon subunit in Escherichia coli ATP synthase and implications for enzyme regulation.
    Bulygin VV; Duncan TM; Cross RL
    J Biol Chem; 2004 Aug; 279(34):35616-21. PubMed ID: 15199054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulating the length of the b subunit F1 binding domain in F1F0 ATP synthase from Escherichia coli.
    Bhatt D; Cole SP; Grabar TB; Claggett SB; Cain BD
    J Bioenerg Biomembr; 2005 Apr; 37(2):67-74. PubMed ID: 15906151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.