BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 25851905)

  • 21. TMEM70 and TMEM242 help to assemble the rotor ring of human ATP synthase and interact with assembly factors for complex I.
    Carroll J; He J; Ding S; Fearnley IM; Walker JE
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The purification and characterization of ATP synthase complexes from the mitochondria of four fungal species.
    Liu S; Charlesworth TJ; Bason JV; Montgomery MG; Harbour ME; Fearnley IM; Walker JE
    Biochem J; 2015 May; 468(1):167-75. PubMed ID: 25759169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solution structure of subunit F(6) from the peripheral stalk region of ATP synthase from bovine heart mitochondria.
    Carbajo RJ; Silvester JA; Runswick MJ; Walker JE; Neuhaus D
    J Mol Biol; 2004 Sep; 342(2):593-603. PubMed ID: 15327958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the structure of the stator of the mitochondrial ATP synthase.
    Dickson VK; Silvester JA; Fearnley IM; Leslie AG; Walker JE
    EMBO J; 2006 Jun; 25(12):2911-8. PubMed ID: 16791136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane topography and near-neighbor relationships of the mitochondrial ATP synthase subunits e, f, and g.
    Belogrudov GI; Tomich JM; Hatefi Y
    J Biol Chem; 1996 Aug; 271(34):20340-5. PubMed ID: 8702768
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The affinity purification and characterization of ATP synthase complexes from mitochondria.
    Runswick MJ; Bason JV; Montgomery MG; Robinson GC; Fearnley IM; Walker JE
    Open Biol; 2013 Feb; 3(2):120160. PubMed ID: 23407638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of the mitochondrial ATP synthase by electron cryomicroscopy.
    Rubinstein JL; Walker JE; Henderson R
    EMBO J; 2003 Dec; 22(23):6182-92. PubMed ID: 14633978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure of the epsilon subunit of the proton-translocating ATP synthase from Escherichia coli.
    Uhlin U; Cox GB; Guss JM
    Structure; 1997 Sep; 5(9):1219-30. PubMed ID: 9331422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A yeast mitochondrial ATPase inhibitor interacts with three proteins that are easy to dissociate from the mitochondrial inner membrane.
    Ichikawa N; Nakabayashi K; Hashimoto T
    J Biochem; 2002 Oct; 132(4):649-54. PubMed ID: 12359082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and subunit arrangement of Mycobacterial F
    Kamariah N; Huber RG; Nartey W; Bhushan S; Bond PJ; Grüber G
    J Struct Biol; 2019 Aug; 207(2):199-208. PubMed ID: 31132404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria.
    Watt IN; Montgomery MG; Runswick MJ; Leslie AG; Walker JE
    Proc Natl Acad Sci U S A; 2010 Sep; 107(39):16823-7. PubMed ID: 20847295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Topology and proximity relationships of yeast mitochondrial ATP synthase subunit 8 determined by unique introduced cysteine residues.
    Stephens AN; Roucou X; Artika IM; Devenish RJ; Nagley P
    Eur J Biochem; 2000 Nov; 267(21):6443-51. PubMed ID: 11029588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How the regulatory protein, IF(1), inhibits F(1)-ATPase from bovine mitochondria.
    Gledhill JR; Montgomery MG; Leslie AG; Walker JE
    Proc Natl Acad Sci U S A; 2007 Oct; 104(40):15671-6. PubMed ID: 17895376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ATP synthases: insights into their motor functions from sequence and structural analyses.
    Hong S; Pedersen PL
    J Bioenerg Biomembr; 2003 Apr; 35(2):95-120. PubMed ID: 12887009
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The proximal N-terminal amino acid residues are required for the coupling activity of the bovine heart mitochondrial factor B.
    Belogrudov GI
    Arch Biochem Biophys; 2008 May; 473(1):76-87. PubMed ID: 18319055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural aspects of the gastric H,K ATPase.
    Shin JM; Besancon M; Bamberg K; Sachs G
    Ann N Y Acad Sci; 1997 Nov; 834():65-76. PubMed ID: 9405786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The ζ subunit of the F1FO-ATP synthase of α-proteobacteria controls rotation of the nanomotor with a different structure.
    Zarco-Zavala M; Morales-Ríos E; Mendoza-Hernández G; Ramírez-Silva L; Pérez-Hernández G; García-Trejo JJ
    FASEB J; 2014 May; 28(5):2146-57. PubMed ID: 24522203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two ATP synthases can be linked through subunits i in the inner mitochondrial membrane of Saccharomyces cerevisiae.
    Paumard P; Arselin G; Vaillier J; Chaignepain S; Bathany K; Schmitter JM; Brèthes D; Velours J
    Biochemistry; 2002 Aug; 41(33):10390-6. PubMed ID: 12173925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutations on the N-terminal edge of the DELSEED loop in either the α or β subunit of the mitochondrial F1-ATPase enhance ATP hydrolysis in the absence of the central γ rotor.
    La T; Clark-Walker GD; Wang X; Wilkens S; Chen XJ
    Eukaryot Cell; 2013 Nov; 12(11):1451-61. PubMed ID: 24014764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and Mechanisms of F-Type ATP Synthases.
    Kühlbrandt W
    Annu Rev Biochem; 2019 Jun; 88():515-549. PubMed ID: 30901262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.