These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25852318)

  • 1. Effect of grain size on thermal transport in post-annealed antimony telluride thin films.
    Park NW; Lee WY; Hong JE; Park TH; Yoon SG; Im H; Kim HS; Lee SK
    Nanoscale Res Lett; 2015; 10():20. PubMed ID: 25852318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver content dependent thermal conductivity and thermoelectric properties of electrodeposited antimony telluride thin films.
    Ferrer-Argemi L; Yu Z; Kim J; Myung NV; Lim JH; Lee J
    Sci Rep; 2019 Jun; 9(1):9242. PubMed ID: 31239488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependent thermal conductivity and transition mechanism in amorphous and crystalline Sb
    Li Q; Wei J; Sun H; Zhang K; Huang Z; Zhang L
    Sci Rep; 2017 Oct; 7(1):13747. PubMed ID: 29062082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness.
    Park NW; Lee WY; Kim JA; Song K; Lim H; Kim WD; Yoon SG; Lee SK
    Nanoscale Res Lett; 2014 Feb; 9(1):96. PubMed ID: 24571956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Thickness of Single-Phase Antimony and Tellurium Thin Films on Their Thermal Conductivities.
    Park NW; Park SI; Lee SK
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6729-33. PubMed ID: 26716236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoelectric properties of nanocrystalline Sb
    Morikawa S; Inamoto T; Takashiri M
    Nanotechnology; 2018 Feb; 29(7):075701. PubMed ID: 29260732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the Structural, Electrical and Thermoelectric Properties of Antimony Telluride Thin Films Deposited on Aluminum Nitride-coated Stainless Steel Foil.
    Ahmed A; Han S
    Sci Rep; 2020 Apr; 10(1):6978. PubMed ID: 32332836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Bi
    Roy Chowdhury P; Shi J; Feng T; Ruan X
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4636-4642. PubMed ID: 33433205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Conductivity of β-Phase Ga
    Song Y; Ranga P; Zhang Y; Feng Z; Huang HL; Santia MD; Badescu SC; Gonzalez-Valle CU; Perez C; Ferri K; Lavelle RM; Snyder DW; Klein BA; Deitz J; Baca AG; Maria JP; Ramos-Alvarado B; Hwang J; Zhao H; Wang X; Krishnamoorthy S; Foley BM; Choi S
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38477-38490. PubMed ID: 34370459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Mosaicity to Tune Thermal Transport in Polycrystalline Aluminum Nitride Thin Films.
    Singh S; Shervin S; Sun H; Yarali M; Chen J; Lin R; Li KH; Li X; Ryou JH; Mavrokefalos A
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20085-20094. PubMed ID: 29772174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Facile Surfactant-Assisted Reflux Method for the Synthesis of Single-Crystalline Sb2Te3 Nanostructures with Enhanced Thermoelectric Performance.
    Yang HQ; Miao L; Liu CY; Li C; Honda S; Iwamoto Y; Huang R; Tanemura S
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14263-71. PubMed ID: 26060933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoelectric properties of Sb2Te3 thin films by electron beam evaporation.
    Chang H; Kao MJ; Peng CH; Kuo CG; Huang KD
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7491-4. PubMed ID: 22103227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of strain on thermal conductivity of silicon dioxide thin films using test method based on 3-ω technique and uniaxial strain setup.
    Li Z; Wang H; Zhao H; Gu H; Wang J; Wei X
    Rev Sci Instrum; 2020 Aug; 91(8):084901. PubMed ID: 32872976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the Properties of La
    Liu D; Shi P; Liu Y; Zhang Y; Tian B; Ren W
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The W alloying effect on thermal stability and hardening of nanostructured Cu-W alloyed thin films.
    Zhao JT; Zhang JY; Hou ZQ; Wu K; Feng XB; Liu G; Sun J
    Nanotechnology; 2018 May; 29(19):195705. PubMed ID: 29469813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable thermal conductivity of thin films of polycrystalline AlN by structural inhomogeneity and interfacial oxidation.
    Jaramillo-Fernandez J; Ordonez-Miranda J; Ollier E; Volz S
    Phys Chem Chem Phys; 2015 Mar; 17(12):8125-37. PubMed ID: 25729791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of (102) Diffracted Peak on Magnetic, Photoelectric, and Adhesive Characteristics of Fe₂Si Films.
    Chen YT; Zou YJ
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1198-203. PubMed ID: 29683276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of electrical properties on thermal temperature in nanocrystalline SnO2 thin films.
    Du J; Zhang H; Jiao Z; Wu M; Shek CH; Wu CM; Lai JK; Chen Z
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10659-63. PubMed ID: 22408968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving carrier transport in Cu
    Bergum K; Riise HN; Gorantla S; Lindberg PF; Jensen IJT; Gunnæs AE; Galeckas A; Diplas S; Svensson BG; Monakhov E
    J Phys Condens Matter; 2018 Feb; 30(7):075702. PubMed ID: 29363624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Post Processing on Thermal Conductivity of ITO Thin Films.
    Kaźmierczak-Bałata A; Bodzenta J; Dehbashi M; Mayandi J; Venkatachalapathy V
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.