These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25852382)

  • 1. The phase transformation of CuInS2 from chalcopyrite to wurtzite.
    Xie BB; Hu BB; Jiang LF; Li G; Du ZL
    Nanoscale Res Lett; 2015; 10():86. PubMed ID: 25852382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase.
    Tang A; Hu Z; Yin Z; Ye H; Yang C; Teng F
    Dalton Trans; 2015 May; 44(19):9251-9. PubMed ID: 25910188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of hexagonal structured wurtzite and chalcopyrite CuInS2 via a simple solution route.
    Sheng X; Wang L; Luo Y; Yang D
    Nanoscale Res Lett; 2011 Oct; 6(1):562. PubMed ID: 22027183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods.
    Connor ST; Hsu CM; Weil BD; Aloni S; Cui Y
    J Am Chem Soc; 2009 Apr; 131(13):4962-6. PubMed ID: 19281233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure-induced bandgap engineering and photoresponse enhancement of wurtzite CuInS
    Ye M; Li Y; Tang R; Liu S; Ma S; Liu H; Tao Q; Yang B; Wang X; Yue H; Zhu P
    Nanoscale; 2022 Feb; 14(7):2668-2675. PubMed ID: 35107111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic Analysis of the Cation Exchange in Nanorods from Cu
    Thiel F; Palencia C; Weller H
    ACS Nano; 2023 Feb; 17(4):3676-3685. PubMed ID: 36749683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photofunctional Materials Fabricated with Chalcopyrite-Type Semiconductor Nanoparticles Composed of AgInS2 and Its Solid Solutions.
    Torimoto T; Kameyama T; Kuwabata S
    J Phys Chem Lett; 2014 Jan; 5(2):336-47. PubMed ID: 26270709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and Optical Properties of Cubic Chalcopyrite/Hexagonal Wurtzite Core/Shell Copper Indium Sulfide Nanocrystals.
    Ning J; Kershaw SV; Rogach AL
    J Am Chem Soc; 2019 Dec; 141(51):20516-20524. PubMed ID: 31833362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polytypic Nanocrystals of Cu-Based Ternary Chalcogenides: Colloidal Synthesis and Photoelectrochemical Properties.
    Wu L; Chen SY; Fan FJ; Zhuang TT; Dai CM; Yu SH
    J Am Chem Soc; 2016 May; 138(17):5576-84. PubMed ID: 27063512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable structural and optical properties of CuInS
    Ming SK; Taylor RA; McNaughter PD; Lewis DJ; Leontiadou MA; O'Brien P
    RSC Adv; 2021 Jun; 11(35):21351-21358. PubMed ID: 35478826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase control and its mechanism of CuInS2 nanoparticles.
    Kuzuya T; Hamanaka Y; Itoh K; Kino T; Sumiyama K; Fukunaka Y; Hirai S
    J Colloid Interface Sci; 2012 Dec; 388(1):137-43. PubMed ID: 22944477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-Controlled Growth of CuInS
    Ning J; Duan Z; Kershaw SV; Rogach AL
    ACS Nano; 2020 Sep; 14(9):11799-11808. PubMed ID: 32865971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoelectrochemical Properties of Vertically Aligned CuInS2 Nanorod Arrays Prepared via Template-Assisted Growth and Transfer.
    Yang W; Oh Y; Kim J; Kim H; Shin H; Moon J
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):425-31. PubMed ID: 26645722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-stimulated carrier dynamics of CuInS2/CdS heterotetrapod nanocrystals.
    Sakamoto M; Inoue K; Okano M; Saruyama M; Kim S; So YG; Kimoto K; Kanemitsu Y; Teranishi T
    Nanoscale; 2016 May; 8(18):9517-20. PubMed ID: 27118533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and Theoretical Study of Stable and Metastable Phases in Sputtered CuInS
    Larsen JK; Sopiha KV; Persson C; Platzer-Björkman C; Edoff M
    Adv Sci (Weinh); 2022 Aug; 9(23):e2200848. PubMed ID: 35726048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General synthesis of I-III-VI2 ternary semiconductor nanocrystals.
    Wang D; Zheng W; Hao C; Peng Q; Li Y
    Chem Commun (Camb); 2008 Jun; (22):2556-8. PubMed ID: 18506242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic biomineralization of biocompatible CuInS
    Spangler LC; Chu R; Lu L; Kiely CJ; Berger BW; McIntosh S
    Nanoscale; 2017 Jul; 9(27):9340-9351. PubMed ID: 28661538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation and characterization of nanoparticles based CuInS2 absorbing layer for solar cell.
    Lee DG; Lee NH; Oh HJ; Jung SC; Hwang JS; Lee WJ; Kim SJ
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1434-7. PubMed ID: 21456206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu1.94S-Assisted Growth of Wurtzite CuInS2 Nanoleaves by In Situ Copper Sulfidation.
    Cai C; Zhai L; Zou C; Li Z; Zhang L; Yang Y; Huang S
    Nanoscale Res Lett; 2015 Dec; 10(1):996. PubMed ID: 26173675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and high-pressure transformation of metastable wurtzite-structured CuGaS2 nanocrystals.
    Xiao N; Zhu L; Wang K; Dai Q; Wang Y; Li S; Sui Y; Ma Y; Liu J; Liu B; Zou G; Zou B
    Nanoscale; 2012 Dec; 4(23):7443-7. PubMed ID: 23086438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.