BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 25853734)

  • 1. Peptides for specifically targeting nanoparticles to cellular organelles: quo vadis?
    Field LD; Delehanty JB; Chen Y; Medintz IL
    Acc Chem Res; 2015 May; 48(5):1380-90. PubMed ID: 25853734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of diverse peptidyl motifs for cellular delivery of semiconductor quantum dots.
    Gemmill KB; Muttenthaler M; Delehanty JB; Stewart MH; Susumu K; Dawson PE; Medintz IL
    Anal Bioanal Chem; 2013 Jul; 405(19):6145-54. PubMed ID: 23732866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system.
    Delehanty JB; Bradburne CE; Boeneman K; Susumu K; Farrell D; Mei BC; Blanco-Canosa JB; Dawson G; Dawson PE; Mattoussi H; Medintz IL
    Integr Biol (Camb); 2010 Jun; 2(5-6):265-77. PubMed ID: 20535418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide-Mediated Delivery of Chemical Probes and Therapeutics to Mitochondria.
    Jean SR; Ahmed M; Lei EK; Wisnovsky SP; Kelley SO
    Acc Chem Res; 2016 Sep; 49(9):1893-902. PubMed ID: 27529125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delivering quantum dots into cells: strategies, progress and remaining issues.
    Delehanty JB; Mattoussi H; Medintz IL
    Anal Bioanal Chem; 2009 Feb; 393(4):1091-105. PubMed ID: 18836855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular delivery of nanocarriers and targeting to subcellular organelles.
    Jhaveri A; Torchilin V
    Expert Opin Drug Deliv; 2016; 13(1):49-70. PubMed ID: 26358656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically Designed Nanoscale Materials for Controlling Cellular Processes.
    Debnath K; Pal S; Jana NR
    Acc Chem Res; 2021 Jul; 54(14):2916-2927. PubMed ID: 34232016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly "Targeted" Drug Delivery Systems.
    Maity AR; Stepensky D
    Mol Pharm; 2016 Jan; 13(1):1-7. PubMed ID: 26587994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing potential peptide targeting ligands by quantification of cellular adhesion of model nanoparticles under flow conditions.
    Broda E; Mickler FM; Lächelt U; Morys S; Wagner E; Bräuchle C
    J Control Release; 2015 Sep; 213():79-85. PubMed ID: 26134072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 'IntraCell' plugin for assessment of intracellular localization of nano-delivery systems and their targeting to the individual organelles.
    Sneh-Edri H; Stepensky D
    Biochem Biophys Res Commun; 2011 Feb; 405(2):228-33. PubMed ID: 21219848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitophagy induced by nanoparticle-peptide conjugates enabling an alternative intracellular trafficking route.
    Zhang Z; Zhou L; Zhou Y; Liu J; Xing X; Zhong J; Xu G; Kang Z; Liu J
    Biomaterials; 2015 Oct; 65():56-65. PubMed ID: 26142776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide-based targeting of fluorophores to organelles in living cells.
    Pap EH; Dansen TB; van Summeren R; Wirtz KW
    Exp Cell Res; 2001 May; 265(2):288-93. PubMed ID: 11302694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid-Based Nanoparticle Functionalization with Coiled-Coil Peptides for
    Aschmann D; Knol RA; Kros A
    Acc Chem Res; 2024 Apr; 57(8):1098-1110. PubMed ID: 38530194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Red clover necrotic mosaic virus capsid as a multifunctional cell targeting plant viral nanoparticle.
    Lockney DM; Guenther RN; Loo L; Overton W; Antonelli R; Clark J; Hu M; Luft C; Lommel SA; Franzen S
    Bioconjug Chem; 2011 Jan; 22(1):67-73. PubMed ID: 21126069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simplified preparation via streptavidin of antisense oligomers/carriers nanoparticles showing improved cellular delivery in culture.
    Wang Y; Nakamura K; Liu X; Kitamura N; Kubo A; Hnatowich DJ
    Bioconjug Chem; 2007; 18(4):1338-43. PubMed ID: 17605463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for the intracellular delivery of nanoparticles.
    Chou LY; Ming K; Chan WC
    Chem Soc Rev; 2011 Jan; 40(1):233-45. PubMed ID: 20886124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-penetrating peptides as delivery vehicles for biology and medicine.
    Stewart KM; Horton KL; Kelley SO
    Org Biomol Chem; 2008 Jul; 6(13):2242-55. PubMed ID: 18563254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internalization and subcellular fate of aptamer and peptide dual-functioned nanoparticles.
    Gao H; Yang Z; Zhang S; Pang Z; Jiang X
    J Drug Target; 2014 Jun; 22(5):450-9. PubMed ID: 24512500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S4(13)-PV cell-penetrating peptide forms nanoparticle-like structures to gain entry into cells.
    Padari K; Koppel K; Lorents A; Hällbrink M; Mano M; Pedroso de Lima MC; Pooga M
    Bioconjug Chem; 2010 Apr; 21(4):774-83. PubMed ID: 20205419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma.
    Zhang B; Sun X; Mei H; Wang Y; Liao Z; Chen J; Zhang Q; Hu Y; Pang Z; Jiang X
    Biomaterials; 2013 Dec; 34(36):9171-82. PubMed ID: 24008043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.