BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25853986)

  • 1. Nanoparticle-lipid bilayer interactions studied with lipid bilayer arrays.
    Lu B; Smith T; Schmidt JJ
    Nanoscale; 2015 May; 7(17):7858-66. PubMed ID: 25853986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study.
    Bailey CM; Kamaloo E; Waterman KL; Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015; 203-204():51-61. PubMed ID: 26042544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Biomolecule Corona around Blood-Circulating, Clinically Used and Antibody-Targeted Lipid Bilayer Nanoscale Vesicles.
    Hadjidemetriou M; Al-Ahmady Z; Mazza M; Collins RF; Dawson K; Kostarelos K
    ACS Nano; 2015 Aug; 9(8):8142-56. PubMed ID: 26135229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol favors the emergence of a long-range autocorrelated fluctuation pattern in voltage-induced ionic currents through lipid bilayers.
    Corvalán NA; Kembro JM; Clop PD; Perillo MA
    Biochim Biophys Acta; 2013 Aug; 1828(8):1754-64. PubMed ID: 23545220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coverage and disruption of phospholipid membranes by oxide nanoparticles.
    Pera H; Nolte TM; Leermakers FA; Kleijn JM
    Langmuir; 2014 Dec; 30(48):14581-90. PubMed ID: 25390582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface charge dependent nanoparticle disruption and deposition of lipid bilayer assemblies.
    Xiao X; Montaño GA; Edwards TL; Allen A; Achyuthan KE; Polsky R; Wheeler DR; Brozik SM
    Langmuir; 2012 Dec; 28(50):17396-403. PubMed ID: 23163515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane-embedded nanoparticles induce lipid rearrangements similar to those exhibited by biological membrane proteins.
    Van Lehn RC; Alexander-Katz A
    J Phys Chem B; 2014 Nov; 118(44):12586-98. PubMed ID: 25347475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid domains in model membranes: a brief historical perspective.
    Mouritsen OG; Bagatolli LA
    Essays Biochem; 2015; 57():1-19. PubMed ID: 25658340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semihydrophobic nanoparticle-induced disruption of supported lipid bilayers: specific ion effect.
    Jing B; Abot RC; Zhu Y
    J Phys Chem B; 2014 Nov; 118(46):13175-82. PubMed ID: 25337793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational simulations of the interaction of lipid membranes with DNA-functionalized gold nanoparticles.
    Lee OS; Schatz GC
    Methods Mol Biol; 2011; 726():283-96. PubMed ID: 21424456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supported lipid bilayer nanosystems: stabilization by undulatory-protrusion forces and destabilization by lipid bridging.
    Savarala S; Monson F; Ilies MA; Wunder SL
    Langmuir; 2011 May; 27(10):5850-61. PubMed ID: 21500811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of supported lipid bilayers by semihydrophobic nanoparticles.
    Jing B; Zhu Y
    J Am Chem Soc; 2011 Jul; 133(28):10983-9. PubMed ID: 21631111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-Dependent Nanoparticle Clustering within Lipid Membranes Induced by Surrounding Medium.
    Šegota S; Vojta D; Kendziora D; Ahmed I; Fruk L; Baranović G
    J Phys Chem B; 2015 Apr; 119(16):5208-19. PubMed ID: 25831116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry.
    Agudo-Canalejo J; Lipowsky R
    ACS Nano; 2015; 9(4):3704-20. PubMed ID: 25840649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-mediated interactions between nanoparticles on a substrate.
    Liang Q; Chen QH; Ma YQ
    J Phys Chem B; 2010 Apr; 114(16):5359-64. PubMed ID: 20369863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Nanoparticle-Interfaced Lipid Bilayer Membranes.
    Kim S; Seo J; Park HH; Kim N; Oh JW; Nam JM
    Acc Chem Res; 2019 Oct; 52(10):2793-2805. PubMed ID: 31553568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes.
    Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M
    Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.
    Lai K; Wang B; Zhang Y; Zheng Y
    Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ionic strength on dynamics of supported phosphatidylcholine lipid bilayer revealed by FRAPP and Langmuir-Blodgett transfer ratios.
    Harb FF; Tinland B
    Langmuir; 2013 May; 29(18):5540-6. PubMed ID: 23581462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion.
    Gkeka P; Angelikopoulos P; Sarkisov L; Cournia Z
    PLoS Comput Biol; 2014 Dec; 10(12):e1003917. PubMed ID: 25474252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.