BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25853986)

  • 21. Formation of Cell Membrane Component Domains in Artificial Lipid Bilayer.
    Tero R; Fukumoto K; Motegi T; Yoshida M; Niwano M; Hirano-Iwata A
    Sci Rep; 2017 Dec; 7(1):17905. PubMed ID: 29263355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular dynamics simulations of phospholipid bilayers.
    Huang P; Perez JJ; Loew GH
    J Biomol Struct Dyn; 1994 Apr; 11(5):927-56. PubMed ID: 7946065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidation of Polyunsaturated Lipid Membranes by Photocatalytic Titanium Dioxide Nanoparticles: Role of pH and Salinity.
    Parra-Ortiz E; Malekkhaiat Häffner S; Saerbeck T; Skoda MWA; Browning KL; Malmsten M
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32446-32460. PubMed ID: 32589394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface-Functionalized Polystyrene Nanoparticles Alter the Transmembrane Potential via Ion-Selective Pores Maintaining Global Bilayer Integrity.
    Perini DA; Parra-Ortiz E; Varó I; Queralt-Martín M; Malmsten M; Alcaraz A
    Langmuir; 2022 Dec; 38(48):14837-14849. PubMed ID: 36417698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations.
    Van Lehn RC; Alexander-Katz A
    Soft Matter; 2015 Apr; 11(16):3165-75. PubMed ID: 25757187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrical method to quantify nanoparticle interaction with lipid bilayers.
    Carney RP; Astier Y; Carney TM; Voïtchovsky K; Jacob Silva PH; Stellacci F
    ACS Nano; 2013 Feb; 7(2):932-42. PubMed ID: 23267695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomembrane disruption by silica-core nanoparticles: effect of surface functional group measured using a tethered bilayer lipid membrane.
    Liu Y; Zhang Z; Zhang Q; Baker GL; Worden RM
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):429-37. PubMed ID: 24060565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size dependent disruption of tethered lipid bilayers by functionalized polystyrene nanoparticles.
    Liu Y; Mark Worden R
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):67-75. PubMed ID: 25285435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Native silica nanoparticles are powerful membrane disruptors.
    Alkhammash HI; Li N; Berthier R; de Planque MR
    Phys Chem Chem Phys; 2015 Jun; 17(24):15547-60. PubMed ID: 25623776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations.
    Prates Ramalho JP; Gkeka P; Sarkisov L
    Langmuir; 2011 Apr; 27(7):3723-30. PubMed ID: 21391652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assess the nature of cholesterol-lipid interactions through the chemical potential of cholesterol in phosphatidylcholine bilayers.
    Ali MR; Cheng KH; Huang J
    Proc Natl Acad Sci U S A; 2007 Mar; 104(13):5372-7. PubMed ID: 17372226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using microcantilevers to study the interactions of lipid bilayers with solid surfaces.
    Liu KW; Biswal SL
    Anal Chem; 2010 Sep; 82(18):7527-32. PubMed ID: 20726504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipid exchange and transfer on nanoparticle supported lipid bilayers: effect of defects, ionic strength, and size.
    Drazenovic J; Ahmed S; Tuzinkiewicz NM; Wunder SL
    Langmuir; 2015 Jan; 31(2):721-31. PubMed ID: 25425021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes.
    Hou WC; Moghadam BY; Corredor C; Westerhoff P; Posner JD
    Environ Sci Technol; 2012 Feb; 46(3):1869-76. PubMed ID: 22242832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aqueous-filled polymer microcavity arrays: versatile & stable lipid bilayer platforms offering high lateral mobility to incorporated membrane proteins.
    Basit H; Gaul V; Maher S; Forster RJ; Keyes TE
    Analyst; 2015 May; 140(9):3012-8. PubMed ID: 25798456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence modulation sensing of positively and negatively charged proteins on lipid bilayers.
    Robison AD; Huang D; Jung H; Cremer PS
    Biointerphases; 2013 Dec; 8(1):1. PubMed ID: 24706114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics studies of the molecular structure and interactions of cholesterol superlattices and random domains in an unsaturated phosphatidylcholine bilayer membrane.
    Zhu Q; Cheng KH; Vaughn MW
    J Phys Chem B; 2007 Sep; 111(37):11021-31. PubMed ID: 17718554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a RIP II protein.
    Manojlovic V; Winkler K; Bunjes V; Neub A; Schubert R; Bugarski B; Leneweit G
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):284-96. PubMed ID: 18359207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diffusion of chlorin-p6 across phosphatidyl choline liposome bilayer probed by second harmonic generation.
    Saini RK; Dube A; Gupta PK; Das K
    J Phys Chem B; 2012 Apr; 116(14):4199-205. PubMed ID: 22414064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.