These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25853986)

  • 41. Nanoparticle translocation through a lipid bilayer tuned by surface chemistry.
    da Rocha EL; Caramori GF; Rambo CR
    Phys Chem Chem Phys; 2013 Feb; 15(7):2282-90. PubMed ID: 23223270
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Supported lipid bilayers as dynamic platforms for tethered particles.
    Hartman KL; Kim S; Kim K; Nam JM
    Nanoscale; 2015 Jan; 7(1):66-76. PubMed ID: 25408237
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermodynamic description of the interactions between lipids in ternary Langmuir monolayers: the study of cholesterol distribution in membranes.
    Wydro P; Hac-Wydro K
    J Phys Chem B; 2007 Mar; 111(10):2495-502. PubMed ID: 17315916
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Formation and colloidal stability of DMPC supported lipid bilayers on SiO2 nanobeads.
    Savarala S; Ahmed S; Ilies MA; Wunder SL
    Langmuir; 2010 Jul; 26(14):12081-8. PubMed ID: 20527833
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cytochrome C interaction with cardiolipin/phosphatidylcholine model membranes: effect of cardiolipin protonation.
    Gorbenko GP; Molotkovsky JG; Kinnunen PK
    Biophys J; 2006 Jun; 90(11):4093-103. PubMed ID: 16565064
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automatable production of shippable bilayer chips by pin tool deposition for an ion channel measurement platform.
    Poulos JL; Jeon TJ; Schmidt JJ
    Biotechnol J; 2010 May; 5(5):511-4. PubMed ID: 20376846
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electric double layer electrostatics of lipid-bilayer-encapsulated nanoparticles: Toward a better understanding of protocell electrostatics.
    Jing H; Das S
    Electrophoresis; 2018 Mar; 39(5-6):752-759. PubMed ID: 29235657
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vesicle fusion to planar membranes is enhanced by cholesterol and low temperature.
    Lee DE; Lew MG; Woodbury DJ
    Chem Phys Lipids; 2013 Jan; 166():45-54. PubMed ID: 23200791
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dark-field-based observation of single-nanoparticle dynamics on a supported lipid bilayer for in situ analysis of interacting molecules and nanoparticles.
    Lee YK; Kim S; Nam JM
    Chemphyschem; 2015 Jan; 16(1):77-84. PubMed ID: 25345401
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of lipid coating on the interaction between silica nanoparticles and membranes.
    Tada DB; Suraniti E; Rossi LM; Leite CA; Oliveira CS; Tumolo TC; Calemczuk R; Livache T; Baptista MS
    J Biomed Nanotechnol; 2014 Mar; 10(3):519-28. PubMed ID: 24730247
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Massively parallel and highly quantitative single-particle analysis on interactions between nanoparticles on supported lipid bilayer.
    Lee YK; Kim S; Oh JW; Nam JM
    J Am Chem Soc; 2014 Mar; 136(10):4081-8. PubMed ID: 24521296
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interface-mediation of lipid bilayer organization and dynamics.
    Mize HE; Blanchard GJ
    Phys Chem Chem Phys; 2016 Jun; 18(25):16977-85. PubMed ID: 27295126
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrophysiological characterization of membrane disruption by nanoparticles.
    de Planque MR; Aghdaei S; Roose T; Morgan H
    ACS Nano; 2011 May; 5(5):3599-606. PubMed ID: 21517083
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of cholesterol concentration on the interaction of cytarabine with lipid membranes: a molecular dynamics simulation study.
    Karami L; Jalili S
    J Biomol Struct Dyn; 2015; 33(6):1254-68. PubMed ID: 25068451
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polystyrene nanoparticle exposure induces ion-selective pores in lipid bilayers.
    Negoda A; Kim KJ; Crandall ED; Worden RM
    Biochim Biophys Acta; 2013 Sep; 1828(9):2215-22. PubMed ID: 23747366
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surface-structure-regulated penetration of nanoparticles across a cell membrane.
    Li Y; Li X; Li Z; Gao H
    Nanoscale; 2012 Jun; 4(12):3768-75. PubMed ID: 22609866
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of natural organic matter (NOM) coatings on nanoparticle adsorption onto supported lipid bilayers.
    Bo Z; Avsar SY; Corliss MK; Chung M; Cho NJ
    J Hazard Mater; 2017 Oct; 339():264-273. PubMed ID: 28654791
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adhesion, intake, and release of nanoparticles by lipid bilayers.
    Burgess S; Wang Z; Vishnyakov A; Neimark AV
    J Colloid Interface Sci; 2020 Mar; 561():58-70. PubMed ID: 31812867
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of lipid charge in organization of water/lipid bilayer interface: insights via computer simulations.
    Polyansky AA; Volynsky PE; Nolde DE; Arseniev AS; Efremov RG
    J Phys Chem B; 2005 Aug; 109(31):15052-9. PubMed ID: 16852905
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cholesterol promotes the interaction of Alzheimer β-amyloid monomer with lipid bilayer.
    Yu X; Zheng J
    J Mol Biol; 2012 Aug; 421(4-5):561-71. PubMed ID: 22108168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.