These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 25853986)

  • 61. Cholesterol promotes the interaction of Alzheimer β-amyloid monomer with lipid bilayer.
    Yu X; Zheng J
    J Mol Biol; 2012 Aug; 421(4-5):561-71. PubMed ID: 22108168
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers' electrical stability.
    Andersson M; Jackman J; Wilson D; Jarvoll P; Alfredsson V; Okeyo G; Duran R
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):550-61. PubMed ID: 21071188
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Forming lipid bilayer membrane arrays on micropatterned polyelectrolyte film surfaces.
    Zhang Y; Wang L; Wang X; Qi G; Han X
    Chemistry; 2013 Jul; 19(27):9059-63. PubMed ID: 23695862
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ionic conductivity of the aqueous layer separating a lipid bilayer membrane and a glass support.
    White RJ; Zhang B; Daniel S; Tang JM; Ervin EN; Cremer PS; White HS
    Langmuir; 2006 Dec; 22(25):10777-83. PubMed ID: 17129059
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Peripheral Membrane Proteins Facilitate Nanoparticle Binding at Lipid Bilayer Interfaces.
    Melby ES; Allen C; Foreman-Ortiz IU; Caudill ER; Kuech TR; Vartanian AM; Zhang X; Murphy CJ; Hernandez R; Pedersen JA
    Langmuir; 2018 Sep; 34(36):10793-10805. PubMed ID: 30102857
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Losartan's affinity to fluid bilayers modulates lipid-cholesterol interactions.
    Hodzic A; Zoumpoulakis P; Pabst G; Mavromoustakos T; Rappolt M
    Phys Chem Chem Phys; 2012 Apr; 14(14):4780-8. PubMed ID: 22395854
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling.
    Pera H; Kleijn JM; Leermakers FA
    J Chem Phys; 2014 Feb; 140(6):065102. PubMed ID: 24527938
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effects of sphingomyelin, cholesterol and zinc ions on the binding, insertion and aggregation of the amyloid Abeta(1-40) peptide in solid-supported lipid bilayers.
    Devanathan S; Salamon Z; Lindblom G; Gröbner G; Tollin G
    FEBS J; 2006 Apr; 273(7):1389-402. PubMed ID: 16689927
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Molecular dynamics simulations of charged and neutral lipid bilayers: treatment of electrostatic interactions.
    Róg T; Murzyn K; Pasenkiewicz-Gierula M
    Acta Biochim Pol; 2003; 50(3):789-98. PubMed ID: 14515159
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ethanol-induced perturbations to planar lipid bilayer structures.
    Setiawan I; Blanchard GJ
    J Phys Chem B; 2014 Jan; 118(2):537-46. PubMed ID: 24372563
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. I. Binding of cytochrome c to cardiolipin/phosphatidylcholine membranes in the absence of oxidase.
    Salamon Z; Tollin G
    Biophys J; 1996 Aug; 71(2):848-57. PubMed ID: 8842223
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Surface-functionalized nanoparticle permeation triggers lipid displacement and water and ion leakage.
    Oroskar PA; Jameson CJ; Murad S
    Langmuir; 2015 Jan; 31(3):1074-85. PubMed ID: 25549137
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Organization in lipid membranes containing cholesterol.
    Veatch SL; Keller SL
    Phys Rev Lett; 2002 Dec; 89(26):268101. PubMed ID: 12484857
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Asymmetric electrostatic effects on the gating of rat brain sodium channels in planar lipid membranes.
    Cukierman S
    Biophys J; 1991 Oct; 60(4):845-55. PubMed ID: 1660316
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Formation and finite element analysis of tethered bilayer lipid structures.
    Kwak KJ; Valincius G; Liao WC; Hu X; Wen X; Lee A; Yu B; Vanderah DJ; Lu W; Lee LJ
    Langmuir; 2010 Dec; 26(23):18199-208. PubMed ID: 20977245
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Distribution of pentachlorophenol in phospholipid bilayers: a molecular dynamics study.
    Mukhopadhyay P; Vogel HJ; Tieleman DP
    Biophys J; 2004 Jan; 86(1 Pt 1):337-45. PubMed ID: 14695275
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Analysis of interactions between cinnamycin and biomimetic membranes.
    Kim SE; Park JW
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110595. PubMed ID: 31735419
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Modulating interactions between ligand-coated nanoparticles and phase-separated lipid bilayers by varying the ligand density and the surface charge.
    Chen X; Tieleman DP; Liang Q
    Nanoscale; 2018 Feb; 10(5):2481-2491. PubMed ID: 29340405
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Rupture of Lipid Membranes Induced by Amphiphilic Janus Nanoparticles.
    Lee K; Zhang L; Yi Y; Wang X; Yu Y
    ACS Nano; 2018 Apr; 12(4):3646-3657. PubMed ID: 29617553
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Direct proof of spontaneous translocation of lipid-covered hydrophobic nanoparticles through a phospholipid bilayer.
    Guo Y; Terazzi E; Seemann R; Fleury JB; Baulin VA
    Sci Adv; 2016 Nov; 2(11):e1600261. PubMed ID: 27847863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.