These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 25853986)

  • 81. Probing the Interaction of Dielectric Nanoparticles with Supported Lipid Membrane Coatings on Nanoplasmonic Arrays.
    Ferhan AR; Ma GJ; Jackman JA; Sut TN; Park JH; Cho NJ
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644423
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Three-Dimensional Heterogeneous Structure Formation on a Supported Lipid Bilayer Disclosed by Single-Particle Tracking.
    Zhong Y; Wang G
    Langmuir; 2018 Oct; 34(39):11857-11865. PubMed ID: 30170491
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Microfluidic Synthesis of Hybrid Nanoparticles with Controlled Lipid Layers: Understanding Flexibility-Regulated Cell-Nanoparticle Interaction.
    Zhang L; Feng Q; Wang J; Zhang S; Ding B; Wei Y; Dong M; Ryu JY; Yoon TY; Shi X; Sun J; Jiang X
    ACS Nano; 2015 Oct; 9(10):9912-21. PubMed ID: 26448362
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Is the tilt of the lipid head group correlated with the number of intermolecular interactions at the bilayer interface?
    Baczynski K; Markiewicz M; Pasenkiewicz-Gierula M
    FEBS Lett; 2018 May; 592(9):1507-1515. PubMed ID: 29637557
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Cooperative transmembrane penetration of nanoparticles.
    Zhang H; Ji Q; Huang C; Zhang S; Yuan B; Yang K; Ma YQ
    Sci Rep; 2015 May; 5():10525. PubMed ID: 26013284
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Lipid composition dictates serum stability of reconstituted high-density lipoproteins: implications for in vivo applications.
    Gilmore SF; Carpenter TS; Ingólfsson HI; Peters SKG; Henderson PT; Blanchette CD; Fischer NO
    Nanoscale; 2018 Apr; 10(16):7420-7430. PubMed ID: 29564446
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Penetration of nanoparticles across a lipid bilayer: effects of particle stiffness and surface hydrophobicity.
    Wang S; Guo H; Li Y; Li X
    Nanoscale; 2019 Mar; 11(9):4025-4034. PubMed ID: 30768108
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Experimental aspects of colloidal interactions in mixed systems of liposome and inorganic nanoparticle and their applications.
    Michel R; Gradzielski M
    Int J Mol Sci; 2012; 13(9):11610-11642. PubMed ID: 23109874
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Structural and functional consequences of reversible lipid asymmetry in living membranes.
    Doktorova M; Symons JL; Levental I
    Nat Chem Biol; 2020 Dec; 16(12):1321-1330. PubMed ID: 33199908
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A semi-empirical model for transport of inorganic nanoparticles across a lipid bilayer: implications for uptake by living cells.
    Nolte TM; Kettler K; Meesters JA; Hendriks AJ; van de Meent D
    Environ Toxicol Chem; 2015 Mar; 34(3):488-96. PubMed ID: 25470256
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Selective Binding of DNA Origami on Biomimetic Lipid Patches.
    Hirtz M; Brglez J; Fuchs H; Niemeyer CM
    Small; 2015 Nov; 11(43):5752-8. PubMed ID: 26389563
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Receptor-mediated membrane adhesion of lipid-polymer hybrid (LPH) nanoparticles studied by dissipative particle dynamics simulations.
    Li Z; Gorfe AA
    Nanoscale; 2015 Jan; 7(2):814-24. PubMed ID: 25438167
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Interaction of nanoparticles with lipid membrane.
    Roiter Y; Ornatska M; Rammohan AR; Balakrishnan J; Heine DR; Minko S
    Nano Lett; 2008 Mar; 8(3):941-4. PubMed ID: 18254602
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Different effects of di- and triphenyltin compounds on lipid bilayer dithionite permeabilization.
    Gabrielska J; Kral T; Langner M; Przestalski S
    Z Naturforsch C J Biosci; 2000; 55(9-10):758-63. PubMed ID: 11098827
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Ion-bridges and lipids drive aggregation of same-charge nanoparticles on lipid membranes.
    Lavagna E; Bochicchio D; De Marco AL; Güven ZP; Stellacci F; Rossi G
    Nanoscale; 2022 May; 14(18):6912-6921. PubMed ID: 35451442
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Ionic transport in lipid bilayer membranes.
    Bordi F; Cametti C; Naglieri A
    Biophys J; 1998 Mar; 74(3):1358-70. PubMed ID: 9512032
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Interaction of partially denatured insulin with a DSPC floating lipid bilayer.
    Dennison AJ; Jones RA; Staniforth RA; Parnell AJ
    Soft Matter; 2016 Jan; 12(3):824-9. PubMed ID: 26540006
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns.
    Adams PG; Swingle KL; Paxton WF; Nogan JJ; Stromberg LR; Firestone MA; Mukundan H; Montaño GA
    Sci Rep; 2015 May; 5():10331. PubMed ID: 26015293
    [TBL] [Abstract][Full Text] [Related]  

  • 99. How a lipid bilayer membrane responds to an oscillating nanoparticle: Promoted membrane undulation and directional wave propagation.
    Li S; Yan Z; Huang F; Zhang X; Yue T
    Colloids Surf B Biointerfaces; 2020 Mar; 187():110651. PubMed ID: 31784121
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Toward More Free-Floating Model Cell Membranes: Method Development and Application to Their Interaction with Nanoparticles.
    Yousefi N; Wargenau A; Tufenkji N
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14339-48. PubMed ID: 27211513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.