These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 25853986)

  • 101. Partial wrapping and spontaneous endocytosis of spherical nanoparticles by tensionless lipid membranes.
    Spangler EJ; Upreti S; Laradji M
    J Chem Phys; 2016 Jan; 144(4):044901. PubMed ID: 26827231
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Protein-coated nanoparticles exhibit Lévy flights on a suspended lipid bilayer.
    Fleury JB; Baulin VA; Le Guével X
    Nanoscale; 2022 Sep; 14(36):13178-13186. PubMed ID: 36043913
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Arrayed water-in-oil droplet bilayers for membrane transport analysis.
    Watanabe R; Soga N; Hara M; Noji H
    Lab Chip; 2016 Aug; 16(16):3043-8. PubMed ID: 27080052
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Ligand-decoration determines the translational and rotational dynamics of nanoparticles on a lipid bilayer membrane.
    Zhang Z; Ma W; He K; Yuan B; Yang K
    Phys Chem Chem Phys; 2021 Apr; 23(15):9158-9165. PubMed ID: 33885120
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Spherical Nanoparticle Supported Lipid Bilayers: A Tool for Modeling Protein Interactions with Curved Membranes.
    Tyndall ER; Tian F
    Methods Mol Biol; 2018; 1688():99-109. PubMed ID: 29151206
    [TBL] [Abstract][Full Text] [Related]  

  • 106. One-dimensional protein-based nanoparticles induce lipid bilayer disruption: carbon nanotube conjugates and amyloid fibrils.
    Hirano A; Uda K; Maeda Y; Akasaka T; Shiraki K
    Langmuir; 2010 Nov; 26(22):17256-9. PubMed ID: 20964299
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Nano-bio-computing lipid nanotablet.
    Seo J; Kim S; Park HH; Choi DY; Nam JM
    Sci Adv; 2019 Feb; 5(2):eaau2124. PubMed ID: 30801008
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Fluidic and air-stable supported lipid bilayer and cell-mimicking microarrays.
    Deng Y; Wang Y; Holtz B; Li J; Traaseth N; Veglia G; Stottrup BJ; Elde R; Pei D; Guo A; Zhu XY
    J Am Chem Soc; 2008 May; 130(19):6267-71. PubMed ID: 18407640
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Lipid bilayer-integrated optoelectronic tweezers for nanoparticle manipulations.
    Ota S; Wang S; Wang Y; Yin X; Zhang X
    Nano Lett; 2013 Jun; 13(6):2766-70. PubMed ID: 23659726
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Characterization, nanoparticle self-organization, and Monte Carlo simulation of magnetoliposomes.
    Salvador MA; Costa AS; Gaeti M; Mendes LP; Lima EM; Bakuzis AF; Miotto R
    Phys Rev E; 2016 Feb; 93(2):022609. PubMed ID: 26986379
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Hybrid lipid-nanoparticle complexes for biomedical applications.
    Vargas KM; Shon YS
    J Mater Chem B; 2019 Feb; 7(5):695-708. PubMed ID: 30740226
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Predicting the Time of Entry of Nanoparticles in Lipid Membranes.
    Liu C; Elvati P; Majumder S; Wang Y; Liu AP; Violi A
    ACS Nano; 2019 Sep; 13(9):10221-10232. PubMed ID: 31401835
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer.
    Yang K; Ma YQ
    Nat Nanotechnol; 2010 Aug; 5(8):579-83. PubMed ID: 20657599
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Instability of C₆₀ fullerene interacting with lipid bilayer.
    Baowan D; Cox BJ; Hill JM
    J Mol Model; 2012 Feb; 18(2):549-57. PubMed ID: 21541745
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Interfacial tension of bilayer lipid membrane formed from phosphatidylethanolamine.
    Petelska AD; Figaszewski ZA
    Biochim Biophys Acta; 2002 Dec; 1567(1-2):79-86. PubMed ID: 12488040
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Lipid bilayer composition can influence the orientation of proteorhodopsin in artificial membranes.
    Tunuguntla R; Bangar M; Kim K; Stroeve P; Ajo-Franklin CM; Noy A
    Biophys J; 2013 Sep; 105(6):1388-96. PubMed ID: 24047990
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Self-assembly of anionic, ligand-coated nanoparticles in lipid membranes.
    Angelikopoulos P; Sarkisov L; Cournia Z; Gkeka P
    Nanoscale; 2017 Jan; 9(3):1040-1048. PubMed ID: 27740657
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Activated pathways for the directed insertion of patterned nanoparticles into polymer membranes.
    Ting CL; Frischknecht AL
    Soft Matter; 2013 Oct; 9(40):9615-23. PubMed ID: 26029770
    [TBL] [Abstract][Full Text] [Related]  

  • 119. A new system for bilayer lipid membrane capacitance measurements: method, apparatus and applications.
    Kalinowski S; Figaszewski Z
    Biochim Biophys Acta; 1992 Nov; 1112(1):57-66. PubMed ID: 1420270
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Direct translocation of a negatively charged nanoparticle across a negatively charged model cell membrane.
    Ikeda Y; Nakamura H; Ohsaki S; Watano S
    Phys Chem Chem Phys; 2021 May; 23(17):10591-10599. PubMed ID: 33903858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.