BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

624 related articles for article (PubMed ID: 25854210)

  • 1. Occurrence of cyanobacteria and microcystin toxins in raw and treated waters of the Nile River, Egypt: implication for water treatment and human health.
    Mohamed ZA; Deyab MA; Abou-Dobara MI; El-Sayed AK; El-Raghi WM
    Environ Sci Pollut Res Int; 2015 Aug; 22(15):11716-27. PubMed ID: 25854210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Occurrence of Potential Harmful Cyanobacteria and Cyanotoxins in the Obrzyca River (Poland), a Source of Drinking Water.
    Czyżewska W; Piontek M; Łuszczyńska K
    Toxins (Basel); 2020 Apr; 12(5):. PubMed ID: 32354080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new morphospecies of Microcystis sp. forming bloom in the Cheffia dam (Algeria): seasonal variation of microcystin concentrations in raw water and their removal in a full-scale treatment plant.
    Nasri H; Bouaïcha N; Harche MK
    Environ Toxicol; 2007 Aug; 22(4):347-56. PubMed ID: 17607726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-Occurrence of Microcystins and Taste-and-Odor Compounds in Drinking Water Source and Their Removal in a Full-Scale Drinking Water Treatment Plant.
    Shang L; Feng M; Xu X; Liu F; Ke F; Li W
    Toxins (Basel); 2018 Jan; 10(1):. PubMed ID: 29301296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective doses, guidelines & regulations.
    Burch MD
    Adv Exp Med Biol; 2008; 619():831-53. PubMed ID: 18461792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants.
    Hoeger SJ; Hitzfeld BC; Dietrich DR
    Toxicol Appl Pharmacol; 2005 Mar; 203(3):231-42. PubMed ID: 15737677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyanobacteria and their toxins in Guanting Reservoir of Beijing, China.
    Dai R; Liu H; Qu J; Ru J; Hou Y
    J Hazard Mater; 2008 May; 153(1-2):470-7. PubMed ID: 17919815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can Cyanobacterial Diversity in the Source Predict the Diversity in Sludge and the Risk of Toxin Release in a Drinking Water Treatment Plant?
    Jalili F; Trigui H; Guerra Maldonado JF; Dorner S; Zamyadi A; Shapiro BJ; Terrat Y; Fortin N; Sauvé S; Prévost M
    Toxins (Basel); 2021 Jan; 13(1):. PubMed ID: 33401450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of cyanobacterial metabolites in surface and raw drinking waters reveals more than microcystin.
    Beversdorf LJ; Rude K; Weirich CA; Bartlett SL; Seaman M; Kozik C; Biese P; Gosz T; Suha M; Stempa C; Shaw C; Hedman C; Piatt JJ; Miller TR
    Water Res; 2018 Sep; 140():280-290. PubMed ID: 29729580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of multiple microcystins and cylindrospermopsin in clarifier sludge and a drinking water source: Effects of particulate attached bacteria and phycocyanin.
    Maghsoudi E; Fortin N; Greer C; Duy SV; Fayad P; Sauvé S; Prévost M; Dorner S
    Ecotoxicol Environ Saf; 2015 Oct; 120():409-17. PubMed ID: 26122734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First Detection of Microcystin-LR in the Amazon River at the Drinking Water Treatment Plant of the Municipality of Macapá, Brazil.
    D C Oliveira E; Castelo-Branco R; Silva L; Silva N; Azevedo J; Vasconcelos V; Faustino S; Cunha A
    Toxins (Basel); 2019 Nov; 11(11):. PubMed ID: 31731712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins.
    Merel S; Walker D; Chicana R; Snyder S; Baurès E; Thomas O
    Environ Int; 2013 Sep; 59():303-27. PubMed ID: 23892224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Management of toxic cyanobacteria for drinking water production of Ain Zada Dam.
    Saoudi A; Brient L; Boucetta S; Ouzrout R; Bormans M; Bensouilah M
    Environ Monit Assess; 2017 Jul; 189(7):361. PubMed ID: 28667413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of microcystins by phototrophic biofilms. A microcosm study.
    Babica P; Bláha L; Marsálek B
    Environ Sci Pollut Res Int; 2005 Nov; 12(6):369-74. PubMed ID: 16305143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring and removal of cyanobacterial toxins from drinking water by algal-activated carbon.
    Ibrahim WM; Salim EH; Azab YA; Ismail AH
    Toxicol Ind Health; 2016 Oct; 32(10):1752-62. PubMed ID: 25964240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microcystin concentrations in the Nile River sediments and removal of microcystin-LR by sediments during batch experiments.
    Mohamed ZA; El-Sharouny HM; Ali WS
    Arch Environ Contam Toxicol; 2007 May; 52(4):489-95. PubMed ID: 17380237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species-dependence of cyanobacteria removal efficiency by different drinking water treatment processes.
    Zamyadi A; Dorner S; Sauvé S; Ellis D; Bolduc A; Bastien C; Prévost M
    Water Res; 2013 May; 47(8):2689-700. PubMed ID: 23515107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxic cyanobacteria in Florida waters.
    Burns J
    Adv Exp Med Biol; 2008; 619():127-37. PubMed ID: 18461767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence and toxicity of Microcystis aeruginosa (Cyanobacteria) in the Paraná River, downstream of the Yacyretá dam (Argentina).
    Forastier ME; Zalocar Y; Andrinolo D; Domitrovic HA
    Rev Biol Trop; 2016 Mar; 64(1):203-11. PubMed ID: 28862419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A qPCR-Based Tool to Diagnose the Presence of Harmful Cyanobacteria and Cyanotoxins in Drinking Water Sources.
    Chiu YT; Chen YH; Wang TS; Yen HK; Lin TF
    Int J Environ Res Public Health; 2017 May; 14(5):. PubMed ID: 28531121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.