These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25854252)

  • 1. Slip length crossover on a graphene surface.
    Liang Z; Keblinski P
    J Chem Phys; 2015 Apr; 142(13):134701. PubMed ID: 25854252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between induced fluid structure and boundary slip in nanoscale polymer films.
    Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051603. PubMed ID: 21230484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2012 Jan; 136(2):024705. PubMed ID: 22260608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slip boundary conditions for shear flow of polymer melts past atomically flat surfaces.
    Niavarani A; Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041606. PubMed ID: 18517634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of fluid velocity slip at solid surfaces.
    Hansen JS; Todd BD; Daivis PJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016313. PubMed ID: 21867310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length.
    Voronov RS; Papavassiliou DV; Lee LL
    J Chem Phys; 2006 May; 124(20):204701. PubMed ID: 16774358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying two regimes of slip of simple fluids over smooth surfaces with weak and strong wall-fluid interaction energies.
    Hu H; Bao L; Priezjev NV; Luo K
    J Chem Phys; 2017 Jan; 146(3):034701. PubMed ID: 28109239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear rate threshold for the boundary slip in dense polymer films.
    Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031608. PubMed ID: 19905124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slip of Alkanes Confined between Surfactant Monolayers Adsorbed on Solid Surfaces.
    Ewen JP; Kannam SK; Todd BD; Dini D
    Langmuir; 2018 Apr; 34(13):3864-3873. PubMed ID: 29537281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion.
    Sendner C; Horinek D; Bocquet L; Netz RR
    Langmuir; 2009 Sep; 25(18):10768-81. PubMed ID: 19591481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slip boundary conditions over curved surfaces.
    Guo L; Chen S; Robbins MO
    Phys Rev E; 2016 Jan; 93(1):013105. PubMed ID: 26871153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of fluid slip in cylindrical nanopores using equilibrium molecular simulations.
    Sam A; Hartkamp R; Kannam SK; Sathian SP
    Nanotechnology; 2018 Nov; 29(48):485404. PubMed ID: 30207542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface effects on friction-induced fluid heating in nanochannel flows.
    Li Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026312. PubMed ID: 19391845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate-dependent slip boundary conditions for simple fluids.
    Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051605. PubMed ID: 17677076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations.
    Priezjev NV; Darhuber AA; Troian SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041608. PubMed ID: 15903683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of viscous heating and wall-fluid interaction energy on rate-dependent slip behavior of simple fluids.
    Bao L; Priezjev NV; Hu H; Luo K
    Phys Rev E; 2017 Sep; 96(3-1):033110. PubMed ID: 29346922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Solid Wall Properties in the Interface Slip of Liquid in Nanochannels.
    Gao W; Zhang X; Han X; Shen C
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30558345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slip divergence of water flow in graphene nanochannels: the role of chirality.
    Wagemann E; Oyarzua E; Walther JH; Zambrano HA
    Phys Chem Chem Phys; 2017 Mar; 19(13):8646-8652. PubMed ID: 28195288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Giant slip length at a supercooled liquid-solid interface.
    Lafon S; Chennevière A; Restagno F; Merabia S; Joly L
    Phys Rev E; 2023 Feb; 107(2-2):025101. PubMed ID: 36932489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.