These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25854255)

  • 1. A transition between bistable ice when coupling electric field and nanoconfinement.
    Mei F; Zhou X; Kou J; Wu F; Wang C; Lu H
    J Chem Phys; 2015 Apr; 142(13):134704. PubMed ID: 25854255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromelting of confined monolayer ice.
    Qiu H; Guo W
    Phys Rev Lett; 2013 May; 110(19):195701. PubMed ID: 23705718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase transitions of a water overlayer on charged graphene: from electromelting to electrofreezing.
    Zhu X; Yuan Q; Zhao YP
    Nanoscale; 2014 May; 6(10):5432-7. PubMed ID: 24718284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation.
    Javadian S; Taghavi F; Yari F; Hashemianzadeh SM
    J Mol Graph Model; 2012 Sep; 38():40-9. PubMed ID: 23085156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ice-like water monolayer near the wall makes inner water shells diffuse faster inside a charged nanotube.
    Zhou X; Wang C; Wu F; Feng M; Li J; Lu H; Zhou R
    J Chem Phys; 2013 May; 138(20):204710. PubMed ID: 23742503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of two-dimensional monolayer water confined in hydrophobic and charged environments.
    Kumar P; Han S
    J Chem Phys; 2012 Sep; 137(11):114510. PubMed ID: 22998274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water in Inhomogeneous Nanoconfinement: Coexistence of Multilayered Liquid and Transition to Ice Nanoribbons.
    Qiu H; Zeng XC; Guo W
    ACS Nano; 2015 Oct; 9(10):9877-84. PubMed ID: 26348704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface effect on the electromelting behavior of nanoconfined water.
    Bose A; Metya AK; Singh JK
    Phys Chem Chem Phys; 2015 Sep; 17(35):23147-54. PubMed ID: 26278061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrofreezing of confined water.
    Zangi R; Mark AE
    J Chem Phys; 2004 Apr; 120(15):7123-30. PubMed ID: 15267616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The behaviour of water confined in zeolites: molecular dynamics simulations versus experiment.
    Demontis P; Gulín-González J; Masia M; Suffritti GB
    J Phys Condens Matter; 2010 Jul; 22(28):284106. PubMed ID: 21399278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Nature of Heterogeneous Electrofreezing of Supercooled Water Revealed on Polar (Pyroelectric) Surfaces.
    Javitt LF; Curland S; Weissbuch I; Ehre D; Lahav M; Lubomirsky I
    Acc Chem Res; 2022 May; 55(10):1383-1394. PubMed ID: 35504292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrofreezing of water droplets under electrowetting fields.
    Carpenter K; Bahadur V
    Langmuir; 2015 Feb; 31(7):2243-8. PubMed ID: 25651240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water in nanoconfinement between hydrophilic self-assembled monolayers.
    Lane JM; Chandross M; Stevens MJ; Grest GS
    Langmuir; 2008 May; 24(10):5209-12. PubMed ID: 18412381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water.
    Foroutan M; Fatemi SM; Shokouh F
    J Mol Graph Model; 2016 May; 66():85-90. PubMed ID: 27041448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase transition of nanotube-confined water driven by electric field.
    Fu Z; Luo Y; Ma J; Wei G
    J Chem Phys; 2011 Apr; 134(15):154507. PubMed ID: 21513395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of ice nucleation by electric fields.
    Yan JY; Patey GN
    J Phys Chem A; 2012 Jul; 116(26):7057-64. PubMed ID: 22686470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of ice-like water structure on the surface of an antifreeze protein.
    Smolin N; Daggett V
    J Phys Chem B; 2008 May; 112(19):6193-202. PubMed ID: 18336017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of boundary conditions on the structure and dynamics of nanoscale confined water.
    Goldsmith J; Martens CC
    J Phys Chem A; 2009 Mar; 113(10):2046-52. PubMed ID: 19222211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic freezing of confined water.
    Zhang G; Zhang W; Dong H
    J Chem Phys; 2010 Oct; 133(13):134703. PubMed ID: 20942551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.