These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25854493)

  • 1. Automatic Dendritic Length Quantification for High Throughput Screening of Mature Neurons.
    Smafield T; Pasupuleti V; Sharma K; Huganir RL; Ye B; Zhou J
    Neuroinformatics; 2015 Oct; 13(4):443-58. PubMed ID: 25854493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated high content image analysis of dendritic arborization in primary mouse hippocampal and rat cortical neurons in culture.
    Schmuck MR; Keil KP; Sethi S; Morgan RK; Lein PJ
    J Neurosci Methods; 2020 Jul; 341():108793. PubMed ID: 32461071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computing neurite outgrowth and arborization in superior cervical ganglion neurons.
    Henley R; Chandrasekaran V; Giulivi C
    Brain Res Bull; 2019 Jan; 144():194-199. PubMed ID: 30529562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing Automated Morphology Quantification Software on Dendrites of Uninjured and Injured Drosophila Neurons.
    Nguyen C; Thompson-Peer KL
    Neuroinformatics; 2021 Oct; 19(4):703-717. PubMed ID: 34342808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NeurphologyJ: an automatic neuronal morphology quantification method and its application in pharmacological discovery.
    Ho SY; Chao CY; Huang HL; Chiu TW; Charoenkwan P; Hwang E
    BMC Bioinformatics; 2011 Jun; 12():230. PubMed ID: 21651810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeTerm: Software for automatic detection of neuronal dendritic branch terminals via an artificial neural network.
    Kanaoka Y; Skibbe H; Hayashi Y; Uemura T; Hattori Y
    Genes Cells; 2019 Jul; 24(7):464-472. PubMed ID: 31095815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SpineJ: A software tool for quantitative analysis of nanoscale spine morphology.
    Levet F; Tønnesen J; Nägerl UV; Sibarita JB
    Methods; 2020 Mar; 174():49-55. PubMed ID: 32006677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An open-source tool for analysis and automatic identification of dendritic spines using machine learning.
    Smirnov MS; Garrett TR; Yasuda R
    PLoS One; 2018; 13(7):e0199589. PubMed ID: 29975722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic contour extraction from 2D neuron images.
    Leandro JJ; Cesar RM; Costa Lda F
    J Neurosci Methods; 2009 Mar; 177(2):497-509. PubMed ID: 19046989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved automatic centerline tracing for dendritic and axonal structures.
    Jiménez D; Labate D; Kakadiaris IA; Papadakis M
    Neuroinformatics; 2015 Apr; 13(2):227-44. PubMed ID: 25433514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NeuronCyto II: An automatic and quantitative solution for crossover neural cells in high throughput screening.
    Ong KH; De J; Cheng L; Ahmed S; Yu W
    Cytometry A; 2016 Aug; 89(8):747-54. PubMed ID: 27233092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experience-Dependent Development of Dendritic Arbors in Mouse Visual Cortex.
    Richards SEV; Moore AR; Nam AY; Saxena S; Paradis S; Van Hooser SD
    J Neurosci; 2020 Aug; 40(34):6536-6556. PubMed ID: 32669356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hippocampal dendritic arbor growth in vitro: regulation by Reelin-Disabled-1 signaling.
    MacLaurin SA; Krucker T; Fish KN
    Brain Res; 2007 Oct; 1172():1-9. PubMed ID: 17825270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic architecture of rat somatosensory thalamocortical projection neurons.
    Ohara PT; Havton LA
    J Comp Neurol; 1994 Mar; 341(2):159-71. PubMed ID: 8163721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NeuriteTracer: a novel ImageJ plugin for automated quantification of neurite outgrowth.
    Pool M; Thiemann J; Bar-Or A; Fournier AE
    J Neurosci Methods; 2008 Feb; 168(1):134-9. PubMed ID: 17936365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Neuron Reconstruction from 3D Fluorescence Microscopy Images Using Sequential Monte Carlo Estimation.
    Radojević M; Meijering E
    Neuroinformatics; 2019 Jul; 17(3):423-442. PubMed ID: 30542954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational framework for studying neuron morphology from in vitro high content neuron-based screening.
    Huang Y; Zhou X; Miao B; Lipinski M; Zhang Y; Li F; Degterev A; Yuan J; Hu G; Wong ST
    J Neurosci Methods; 2010 Jul; 190(2):299-309. PubMed ID: 20580743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative analytic pipeline for evaluating neuronal activities by high-throughput synaptic vesicle imaging.
    Fan J; Xia X; Li Y; Dy JG; Wong ST
    Neuroimage; 2012 Sep; 62(3):2040-54. PubMed ID: 22732566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved detection of soma location and morphology in fluorescence microscopy images of neurons.
    Kayasandik CB; Labate D
    J Neurosci Methods; 2016 Dec; 274():61-70. PubMed ID: 27688018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated 3-D Detection of Dendritic Spines from In Vivo Two-Photon Image Stacks.
    Singh PK; Hernandez-Herrera P; Labate D; Papadakis M
    Neuroinformatics; 2017 Oct; 15(4):303-319. PubMed ID: 28710672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.