BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 25854753)

  • 1. The encapsulation of anthocyanins from berry-type fruits. Trends in foods.
    Robert P; Fredes C
    Molecules; 2015 Apr; 20(4):5875-88. PubMed ID: 25854753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Food matrix affecting anthocyanin bioavailability: review.
    Yang M; Koo SI; Song WO; Chun OK
    Curr Med Chem; 2011; 18(2):291-300. PubMed ID: 21110799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maltodextrin and Gum Arabic-Based Microencapsulation Methods for Anthocyanin Preservation in Juçara Palm (Euterpe edulis Martius) Fruit Pulp.
    Mazuco RA; Cardoso PMM; Bindaco ÉS; Scherer R; Castilho RO; Faraco AAG; Ruas FG; Oliveira JP; Guimarães MCC; de Andrade TU; Lenz D; Braga FC; Endringer DC
    Plant Foods Hum Nutr; 2018 Sep; 73(3):209-215. PubMed ID: 29956110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Health Benefits of Anthocyanins and Their Encapsulation for Potential Use in Food Systems: A Review.
    Yousuf B; Gul K; Wani AA; Singh P
    Crit Rev Food Sci Nutr; 2016 Oct; 56(13):2223-30. PubMed ID: 25745811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bioavailability and absorption of anthocyanins: towards a better understanding.
    McGhie TK; Walton MC
    Mol Nutr Food Res; 2007 Jun; 51(6):702-13. PubMed ID: 17533653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Berries and anthocyanins: promising functional food ingredients with postprandial glycaemia-lowering effects.
    Castro-Acosta ML; Lenihan-Geels GN; Corpe CP; Hall WL
    Proc Nutr Soc; 2016 Aug; 75(3):342-55. PubMed ID: 27170557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal and light stability of anthocyanins from strawberry by-products non-encapsulated and encapsulated with inulin.
    Gomes J; Serrano C; Oliveira C; Dias A; Moldão M
    Acta Sci Pol Technol Aliment; 2021; 20(1):79-92. PubMed ID: 33449522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Influence of Different Air-Drying Conditions on Bioactive Compounds and Antioxidant Activity of Berries.
    Bustos MC; Rocha-Parra D; Sampedro I; de Pascual-Teresa S; León AE
    J Agric Food Chem; 2018 Mar; 66(11):2714-2723. PubMed ID: 29498838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries.
    Wu X; Prior RL
    J Agric Food Chem; 2005 Apr; 53(7):2589-99. PubMed ID: 15796599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saskatoon and wild blueberries have higher anthocyanin contents than other Manitoba berries.
    Hosseinian FS; Beta T
    J Agric Food Chem; 2007 Dec; 55(26):10832-8. PubMed ID: 18052240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced stability of red-fleshed apple anthocyanins by copigmentation and encapsulation.
    Xue J; Su F; Meng Y; Guo Y
    J Sci Food Agric; 2019 May; 99(7):3381-3390. PubMed ID: 30584804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anthocyanins as antimicrobial agents of natural plant origin.
    Cisowska A; Wojnicz D; Hendrich AB
    Nat Prod Commun; 2011 Jan; 6(1):149-56. PubMed ID: 21366068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance liquid chromatography for the analytical characterization of anthocyanins in Vaccinium myrtillus L. (bilberry) fruit and food products.
    Benvenuti S; Brighenti V; Pellati F
    Anal Bioanal Chem; 2018 Jun; 410(15):3559-3571. PubMed ID: 29428993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of color, pigment, and phenolic stability in yogurt systems colored with nonacylated anthocyanins from Berberis boliviana L. as compared to other natural/synthetic colorants.
    Wallace TC; Giusti MM
    J Food Sci; 2008 May; 73(4):C241-8. PubMed ID: 18460117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complementary approaches to gauge the bioavailability and distribution of ingested berry polyphenolics.
    Lila MA; Ribnicky DM; Rojo LE; Rojas-Silva P; Oren A; Havenaar R; Janle EM; Raskin I; Yousef GG; Grace MH
    J Agric Food Chem; 2012 Jun; 60(23):5763-71. PubMed ID: 22111523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of an anthocyanin-rich food colourant from Thymus moroderi and its application in foods.
    Díaz-García MC; Castellar MR; Obón JM; Obón C; Alcaraz F; Rivera D
    J Sci Food Agric; 2015 Apr; 95(6):1283-93. PubMed ID: 25042091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anthocyanin composition and extractability in berry skin and wine of Vitis vinifera L. cv. Aglianico.
    Manfra M; De Nisco M; Bolognese A; Nuzzo V; Sofo A; Scopa A; Santi L; Tenore GC; Novellino E
    J Sci Food Agric; 2011 Dec; 91(15):2749-55. PubMed ID: 21800322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Amino acids composition of fruits-berry pastes after their fast freezing and prolonged storage].
    Guseĭnova BM; Daudova TI
    Vopr Pitan; 2009; 78(1):69-73. PubMed ID: 19348287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation kinetics of anthocyanins from European cranberrybush (Viburnum opulus L.) fruit extracts. Effects of temperature, pH and storage solvent.
    Moldovan B; David L; Chişbora C; Cimpoiu C
    Molecules; 2012 Sep; 17(10):11655-66. PubMed ID: 23023689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gastrointestinal metabolism and bioaccessibility of selected anthocyanins isolated from commonly consumed fruits.
    Victoria-Campos CI; Ornelas-Paz JJ; Rocha-Guzmán NE; Gallegos-Infante JA; Failla ML; Pérez-Martínez JD; Rios-Velasco C; Ibarra-Junquera V
    Food Chem; 2022 Jul; 383():132451. PubMed ID: 35182877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.