These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 25854755)

  • 1. Enhanced materials from nature: nanocellulose from citrus waste.
    Mariño M; Lopes da Silva L; Durán N; Tasic L
    Molecules; 2015 Apr; 20(4):5908-23. PubMed ID: 25854755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytocompatible cellulose nanofibers from invasive plant species Agave americana L. and Ricinus communis L.: a renewable green source of highly crystalline nanocellulose.
    L Evdokimova O; S Alves C; M Krsmanović Whiffen R; Ortega Z; Tomás H; Rodrigues J
    J Zhejiang Univ Sci B; 2021 Jun; 22(6):450-461. PubMed ID: 34128369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre.
    C S JC; George N; Narayanankutty SK
    Carbohydr Polym; 2016 May; 142():158-66. PubMed ID: 26917386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization.
    Li J; Wei X; Wang Q; Chen J; Chang G; Kong L; Su J; Liu Y
    Carbohydr Polym; 2012 Nov; 90(4):1609-13. PubMed ID: 22944423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmentally benign extraction of cellulose from dunchi fiber for nanocellulose fabrication.
    Khan MN; Rehman N; Sharif A; Ahmed E; Farooqi ZH; Din MI
    Int J Biol Macromol; 2020 Jun; 153():72-78. PubMed ID: 32135259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorine-free extraction and structural characterization of cellulose nanofibers from waste husk of millet (Pennisetum glaucum).
    Midhun Dominic CD; Raj V; Neenu KV; Begum PMS; Formela K; Saeb MR; Prabhu DD; Poornima Vijayan P; Ajithkumar TG; Parameswaranpillai J
    Int J Biol Macromol; 2022 May; 206():92-104. PubMed ID: 35217088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ixora coccinea L. - A reliable source of nanocellulose for bio-adsorbent applications.
    Unni R; R R; Ramesh K; Mathew TJ; A A; Dalvi YB; Sindhu R; Madhavan A; Binod P; Pandey A; Syed A; Verma M; Ravindran B; Awasthi MK
    Int J Biol Macromol; 2023 Jun; 239():124467. PubMed ID: 37068536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of entangled nanocellulose fibers from APMP and its magnetic functional property as matrix.
    Li W; Zhao X; Liu S
    Carbohydr Polym; 2013 Apr; 94(1):278-85. PubMed ID: 23544539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction and characterization of nanocellulose from waste of date palm "Phoenix dactylifera″ as reinforcement of polymer composites.
    Bouzidi N; Kadri M; Chouana T; Belkhalfa H; Henni A; Bouhadda Y
    Acta Chim Slov; 2024 Apr; 71(2):186-196. PubMed ID: 38919109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of Nanocellulose Using Ionic Liquids: 1-Propyl-3-Methylimidazolium Chloride and 1-Ethyl-3-Methylimidazolium Chloride.
    Babicka M; Woźniak M; Dwiecki K; Borysiak S; Ratajczak I
    Molecules; 2020 Mar; 25(7):. PubMed ID: 32231037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalization of nanocellulose to quaternized nanocellulose tri-iodide and its evaluation as an antimicrobial agent.
    Bansal M; Kumar D; Chauhan GS; Kaushik A; Kaur G
    Int J Biol Macromol; 2021 Nov; 190():1007-1014. PubMed ID: 34517030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of cellulose nanofibers from Agave gigantea by chemical-mechanical treatment.
    Syafri E; Jamaluddin ; Sari NH; Mahardika M; Amanda P; Ilyas RA
    Int J Biol Macromol; 2022 Mar; 200():25-33. PubMed ID: 34971644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of cotton fiber-based nanocellulose.
    Theivasanthi T; Anne Christma FL; Toyin AJ; Gopinath SCB; Ravichandran R
    Int J Biol Macromol; 2018 Apr; 109():832-836. PubMed ID: 29133091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization.
    Thomas MG; Abraham E; Jyotishkumar P; Maria HJ; Pothen LA; Thomas S
    Int J Biol Macromol; 2015 Nov; 81():768-77. PubMed ID: 26318667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different nanocellulose morphologies (cellulose nanofibers, nanocrystals and nanospheres) extracted from Sunn hemp (Crotalaria Juncea).
    Mahur BK; Ahuja A; Singh S; Maji PK; Rastogi VK
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126657. PubMed ID: 37660858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Management of citrus waste by switching in the production of nanocellulose.
    Naz S; Ahmad N; Akhtar J; Ahmad NM; Ali A; Zia M
    IET Nanobiotechnol; 2016 Dec; 10(6):395-399. PubMed ID: 27906140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High quality fluorescent cellulose nanofibers from endemic rice husk: isolation and characterization.
    Kalita E; Nath BK; Deb P; Agan F; Islam MR; Saikia K
    Carbohydr Polym; 2015 May; 122():308-13. PubMed ID: 25817673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of Agricultural Waste from Paddy (Rice) Fields for the Synthesis of Nanocellulose.
    Kaur M; Sharma P; Kumari S
    J Nanosci Nanotechnol; 2021 Jun; 21(6):3622-3629. PubMed ID: 34739814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemically and mechanically isolated nanocellulose and their self-assembled structures.
    Jiang F; Hsieh YL
    Carbohydr Polym; 2013 Jun; 95(1):32-40. PubMed ID: 23618236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth.
    Cao Y; Jiang Y; Song Y; Cao S; Miao M; Feng X; Fang J; Shi L
    Carbohydr Polym; 2015 Oct; 131():152-8. PubMed ID: 26256171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.