BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 25854915)

  • 1. Reaction of low-molecular-mass organoselenium compounds (and their sulphur analogues) with inflammation-associated oxidants.
    Carroll L; Davies MJ; Pattison DI
    Free Radic Res; 2015 Jun; 49(6):750-67. PubMed ID: 25854915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenium-containing indolyl compounds: Kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins.
    Casaril AM; Ignasiak MT; Chuang CY; Vieira B; Padilha NB; Carroll L; Lenardão EJ; Savegnago L; Davies MJ
    Free Radic Biol Med; 2017 Dec; 113():395-405. PubMed ID: 29055824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of peroxynitrite with selenoproteins and glutathione peroxidase mimics.
    Sies H; Arteel GE
    Free Radic Biol Med; 2000 May; 28(10):1451-5. PubMed ID: 10927168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivity of selenium-containing compounds with myeloperoxidase-derived chlorinating oxidants: Second-order rate constants and implications for biological damage.
    Carroll L; Pattison DI; Fu S; Schiesser CH; Davies MJ; Hawkins CL
    Free Radic Biol Med; 2015 Jul; 84():279-288. PubMed ID: 25841785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction kinetics of selenium-containing compounds with oxidants.
    Carroll L; Gardiner K; Ignasiak M; Holmehave J; Shimodaira S; Breitenbach T; Iwaoka M; Ogilby PR; Pattison DI; Davies MJ
    Free Radic Biol Med; 2020 Aug; 155():58-68. PubMed ID: 32439383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of reaction of peroxynitrite with selenium- and sulfur-containing compounds: Absolute rate constants and assessment of biological significance.
    Storkey C; Pattison DI; Ignasiak MT; Schiesser CH; Davies MJ
    Free Radic Biol Med; 2015 Dec; 89():1049-56. PubMed ID: 26524402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactions of biological oxidants with selenourea: formation of redox active nanoselenium.
    Mishra B; Hassan PA; Priyadarsini KI; Mohan H
    J Phys Chem B; 2005 Jul; 109(26):12718-23. PubMed ID: 16852575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in the mechanism of selenoamino acids toxicity in eukaryotic cells.
    Lazard M; Dauplais M; Blanquet S; Plateau P
    Biomol Concepts; 2017 May; 8(2):93-104. PubMed ID: 28574376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds.
    Nogueira CW; Rocha JB
    Arch Toxicol; 2011 Nov; 85(11):1313-59. PubMed ID: 21720966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative reactivity of myeloperoxidase-derived oxidants with mammalian cells.
    Rayner BS; Love DT; Hawkins CL
    Free Radic Biol Med; 2014 Jun; 71():240-255. PubMed ID: 24632382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids.
    Pattison DI; Davies MJ; Hawkins CL
    Free Radic Res; 2012 Aug; 46(8):975-95. PubMed ID: 22348603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selenium-containing amino acids are targets for myeloperoxidase-derived hypothiocyanous acid: determination of absolute rate constants and implications for biological damage.
    Skaff O; Pattison DI; Morgan PE; Bachana R; Jain VK; Priyadarsini KI; Davies MJ
    Biochem J; 2012 Jan; 441(1):305-16. PubMed ID: 21892922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction of phenylaminoethyl selenides with peroxynitrite and hydrogen peroxide.
    Woznichak MM; Overcast JD; Robertson K; Neumann HM; May SW
    Arch Biochem Biophys; 2000 Jul; 379(2):314-20. PubMed ID: 10898950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preventing protein oxidation with sugars: scavenging of hypohalous acids by 5-selenopyranose and 4-selenofuranose derivatives.
    Storkey C; Pattison DI; White JM; Schiesser CH; Davies MJ
    Chem Res Toxicol; 2012 Nov; 25(11):2589-99. PubMed ID: 23075063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of a novel selenium substituted-sugar (1,4-anhydro-4-seleno-d-talitol, SeTal) on human coronary artery cell lines and mouse aortic rings.
    Zacharias T; Flouda K; Jepps TA; Gammelgaard B; Schiesser CH; Davies MJ
    Biochem Pharmacol; 2020 Mar; 173():113631. PubMed ID: 31494145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a thioselenurane intermediate in the reaction between phenylaminoalkyl selenoxides and glutathione.
    Cowan EA; Oldham CD; May SW
    Arch Biochem Biophys; 2011 Feb; 506(2):201-7. PubMed ID: 21081105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pH on one-electron oxidation chemistry of organoselenium compounds in aqueous solutions.
    Mishra B; Priyadarsini KI; Mohan H
    J Phys Chem A; 2006 Feb; 110(5):1894-900. PubMed ID: 16451022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selenium-containing amino acids as direct and indirect antioxidants.
    Rahmanto AS; Davies MJ
    IUBMB Life; 2012 Nov; 64(11):863-71. PubMed ID: 23086812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preventing metal-mediated oxidative DNA damage with selenium compounds.
    Battin EE; Zimmerman MT; Ramoutar RR; Quarles CE; Brumaghim JL
    Metallomics; 2011 May; 3(5):503-12. PubMed ID: 21286651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myeloperoxidase-derived oxidants rapidly oxidize and disrupt zinc-cysteine/histidine clusters in proteins.
    Cook NL; Pattison DI; Davies MJ
    Free Radic Biol Med; 2012 Dec; 53(11):2072-80. PubMed ID: 23032100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.