BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25855146)

  • 1. Efficient size control of copper nanoparticles generated in irradiated aqueous solutions of star-shaped polyelectrolyte containers.
    Zezin AA; Feldman VI; Abramchuk SS; Danelyan GV; Dyo VV; Plamper FA; Müller AH; Pergushov DV
    Phys Chem Chem Phys; 2015 May; 17(17):11490-8. PubMed ID: 25855146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions.
    Soomro RA; Nafady A; Sirajuddin ; Memon N; Sherazi TH; Kalwar NH
    Talanta; 2014 Dec; 130():415-22. PubMed ID: 25159429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth behaviour and plasmon resonance properties of photocatalytically deposited Cu nanoparticles.
    Kazuma E; Yamaguchi T; Sakai N; Tatsuma T
    Nanoscale; 2011 Sep; 3(9):3641-5. PubMed ID: 21792447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The deposition of iron and silver nanoparticles in graphene-polyelectrolyte brushes.
    Fang M; Chen Z; Wang S; Lu H
    Nanotechnology; 2012 Mar; 23(8):085704. PubMed ID: 22293553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape and size control of Cu nanoparticles by tailoring the surface morphologies of TiN-coated electrodes for biosensing applications.
    Yang CJ; Lu FH
    Langmuir; 2013 Dec; 29(51):16025-33. PubMed ID: 24320707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrothermal synthesis of copper based nanoparticles: antimicrobial screening and interaction with DNA.
    Giannousi K; Lafazanis K; Arvanitidis J; Pantazaki A; Dendrinou-Samara C
    J Inorg Biochem; 2014 Apr; 133():24-32. PubMed ID: 24441110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media.
    Liu P; Oksman K; Mathew AP
    J Colloid Interface Sci; 2016 Feb; 464():175-82. PubMed ID: 26619127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled growth of Cu2O nanoparticles bound to cotton fibres.
    Errokh A; Ferraria AM; Conceição DS; Vieira Ferreira LF; Botelho do Rego AM; Rei Vilar M; Boufi S
    Carbohydr Polym; 2016 May; 141():229-37. PubMed ID: 26877017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization.
    Majoinen J; Walther A; McKee JR; Kontturi E; Aseyev V; Malho JM; Ruokolainen J; Ikkala O
    Biomacromolecules; 2011 Aug; 12(8):2997-3006. PubMed ID: 21740051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(allylamine)-stabilized colloidal copper nanoparticles: synthesis, morphology, and their surface-enhanced Raman scattering properties.
    Wang Y; Asefa T
    Langmuir; 2010 May; 26(10):7469-74. PubMed ID: 20148597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial Activity of Starch Hydrogel Incorporated with Copper Nanoparticles.
    Villanueva ME; Diez AM; González JA; Pérez CJ; Orrego M; Piehl L; Teves S; Copello GJ
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16280-8. PubMed ID: 27295333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ time-resolved XAFS study on the formation mechanism of Cu nanoparticles using poly(N-vinyl-2-pyrrolidone) as a capping agent.
    Nishimura S; Takagaki A; Maenosono S; Ebitani K
    Langmuir; 2010 Mar; 26(6):4473-9. PubMed ID: 20039605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of plant-based phenol derivatives on the formation of Cu and Ag nanoparticles.
    Jacob JA; Biswas N; Mukherjee T; Kapoor S
    Colloids Surf B Biointerfaces; 2011 Oct; 87(1):49-53. PubMed ID: 21621984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of extracellular speciation and corrosion of copper nanoparticles on lung cell membrane integrity.
    Hedberg J; Karlsson HL; Hedberg Y; Blomberg E; Odnevall Wallinder I
    Colloids Surf B Biointerfaces; 2016 May; 141():291-300. PubMed ID: 26859121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Au@Cu2O core-shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance.
    Rai P; Khan R; Raj S; Majhi SM; Park KK; Yu YT; Lee IH; Sekhar PK
    Nanoscale; 2014 Jan; 6(1):581-8. PubMed ID: 24241354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of bovine serum albumin-copper nanocomposites for antibacterial applications.
    Rastogi L; Arunachalam J
    Colloids Surf B Biointerfaces; 2013 Aug; 108():134-41. PubMed ID: 23531744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas-induced formation of Cu nanoparticle as catalyst for high-purity straight and helical carbon nanofibers.
    Jian X; Jiang M; Zhou Z; Zeng Q; Lu J; Wang D; Zhu J; Gou J; Wang Y; Hui D; Yang M
    ACS Nano; 2012 Oct; 6(10):8611-9. PubMed ID: 22963353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous-phase synthesis of nanoparticles of copper/copper oxides and their antifungal effect against Fusarium oxysporum.
    Hermida-Montero LA; Pariona N; Mtz-Enriquez AI; Carrión G; Paraguay-Delgado F; Rosas-Saito G
    J Hazard Mater; 2019 Dec; 380():120850. PubMed ID: 31315070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New routes to Cu(I)/Cu nanocatalysts for the multicomponent click synthesis of 1,2,3-triazoles.
    Abdulkin P; Moglie Y; Knappett BR; Jefferson DA; Yus M; Alonso F; Wheatley AE
    Nanoscale; 2013 Jan; 5(1):342-50. PubMed ID: 23166008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of antibacterial activity of copper nanoparticles.
    Chatterjee AK; Chakraborty R; Basu T
    Nanotechnology; 2014 Apr; 25(13):135101. PubMed ID: 24584282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.