BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

501 related articles for article (PubMed ID: 25855176)

  • 1. Neuromodulatory effect of Gαs- or Gαq-coupled G-protein-coupled receptor on NMDA receptor selectively activates the NMDA receptor/Ca2+/calcineurin/cAMP response element-binding protein-regulated transcriptional coactivator 1 pathway to effectively induce brain-derived neurotrophic factor expression in neurons.
    Fukuchi M; Tabuchi A; Kuwana Y; Watanabe S; Inoue M; Takasaki I; Izumi H; Tanaka A; Inoue R; Mori H; Komatsu H; Takemori H; Okuno H; Bito H; Tsuda M
    J Neurosci; 2015 Apr; 35(14):5606-24. PubMed ID: 25855176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Balance between cAMP and Ca(2+) signals regulates expression levels of pituitary adenylate cyclase-activating polypeptide gene in neurons.
    Fukuchi M; Kuwana Y; Tabuchi A; Tsuda M
    Genes Cells; 2016 Aug; 21(8):921-9. PubMed ID: 27383213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergent phosphomodulation of the major neuronal dendritic potassium channel Kv4.2 by pituitary adenylate cyclase-activating polypeptide.
    Gupte RP; Kadunganattil S; Shepherd AJ; Merrill R; Planer W; Bruchas MR; Strack S; Mohapatra DP
    Neuropharmacology; 2016 Feb; 101():291-308. PubMed ID: 26456351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of NMDA receptors by pituitary adenylate cyclase activating peptide in CA1 neurons requires G alpha q, protein kinase C, and activation of Src.
    Macdonald DS; Weerapura M; Beazely MA; Martin L; Czerwinski W; Roder JC; Orser BA; MacDonald JF
    J Neurosci; 2005 Dec; 25(49):11374-84. PubMed ID: 16339032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of AMPA receptor-mediated ion current by pituitary adenylate cyclase-activating polypeptide (PACAP) in CA1 pyramidal neurons from rat hippocampus.
    Costa L; Santangelo F; Li Volsi G; Ciranna L
    Hippocampus; 2009 Jan; 19(1):99-109. PubMed ID: 18727050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pituitary adenylate cyclase-activating peptide induces long-lasting neuroprotection through the induction of activity-dependent signaling via the cyclic AMP response element-binding protein-regulated transcription co-activator 1.
    Baxter PS; Martel MA; McMahon A; Kind PC; Hardingham GE
    J Neurochem; 2011 Aug; 118(3):365-78. PubMed ID: 21623792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pro- and anti-mitogenic actions of pituitary adenylate cyclase-activating polypeptide in developing cerebral cortex: potential mediation by developmental switch of PAC1 receptor mRNA isoforms.
    Yan Y; Zhou X; Pan Z; Ma J; Waschek JA; DiCicco-Bloom E
    J Neurosci; 2013 Feb; 33(9):3865-78. PubMed ID: 23447598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pituitary adenylate cyclase-activating polypeptide (PACAP) alters parasympathetic neuron gene expression in a time-dependent fashion.
    Sumner AD; Margiotta JF
    J Mol Neurosci; 2008 Nov; 36(1-3):141-56. PubMed ID: 18594777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability.
    Merriam LA; Baran CN; Girard BM; Hardwick JC; May V; Parsons RL
    J Neurosci; 2013 Mar; 33(10):4614-22. PubMed ID: 23467377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pituitary adenylate cyclase activating polypeptide (PACAP) signalling exerts chondrogenesis promoting and protecting effects: implication of calcineurin as a downstream target.
    Juhász T; Matta C; Katona É; Somogyi C; Takács R; Gergely P; Csernoch L; Panyi G; Tóth G; Reglődi D; Tamás A; Zákány R
    PLoS One; 2014; 9(3):e91541. PubMed ID: 24643018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic Adenosine 3',5'-Monophosphate Elevation and Biological Signaling through a Secretin Family Gs-Coupled G Protein-Coupled Receptor Are Restricted to a Single Adenylate Cyclase Isoform.
    Emery AC; Liu XH; Xu W; Eiden MV; Eiden LE
    Mol Pharmacol; 2015 Jun; 87(6):928-35. PubMed ID: 25769305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitatory GABA induces BDNF transcription via CRTC1 and phosphorylated CREB-related pathways in immature cortical cells.
    Fukuchi M; Kirikoshi Y; Mori A; Eda R; Ihara D; Takasaki I; Tabuchi A; Tsuda M
    J Neurochem; 2014 Oct; 131(2):134-46. PubMed ID: 24965890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pituitary adenylate cyclase-activating polypeptide receptor activation in the hypothalamus recruits unique signaling pathways involved in energy homeostasis.
    Maunze B; Bruckner KW; Desai NN; Chen C; Chen F; Baker D; Choi S
    Am J Physiol Endocrinol Metab; 2022 Mar; 322(3):E199-E210. PubMed ID: 35001657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. beta-Arrestin 1 is required for PAC1 receptor-mediated potentiation of long-lasting ERK1/2 activation by glucose in pancreatic beta-cells.
    Broca C; Quoyer J; Costes S; Linck N; Varrault A; Deffayet PM; Bockaert J; Dalle S; Bertrand G
    J Biol Chem; 2009 Feb; 284(7):4332-42. PubMed ID: 19074139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pituitary adenylate cyclase activating polypeptide and PAC1 receptor signaling increase Homer 1a expression in central and peripheral neurons.
    Girard BM; Keller ET; Schutz KC; May V; Braas KM
    Regul Pept; 2004 Dec; 123(1-3):107-16. PubMed ID: 15518900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pituitary adenylate cyclase-activating polypeptide (PACAP(1-38)) enhances N-methyl-D-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1.
    Yaka R; He DY; Phamluong K; Ron D
    J Biol Chem; 2003 Mar; 278(11):9630-8. PubMed ID: 12524444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pituitary adenylate cyclase-activating polypeptide and PACAP receptor expression and function in the rat adrenal gland.
    Mazzocchi G; Malendowicz LK; Neri G; Andreis PG; Ziolkowska A; Gottardo L; Nowak KW; Nussdorfer GG
    Int J Mol Med; 2002 Mar; 9(3):233-43. PubMed ID: 11836629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of tyrosine hydroxylase (TH) gene transcription induced by brain-derived neurotrophic factor (BDNF) and its selective inhibition through Ca(2+) signals evoked via the N-methyl-D-aspartate (NMDA) receptor.
    Fukuchi M; Fujii H; Takachi H; Ichinose H; Kuwana Y; Tabuchi A; Tsuda M
    Brain Res; 2010 Dec; 1366():18-26. PubMed ID: 20965158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-dependent transcriptional activation and mRNA stabilization for cumulative expression of pituitary adenylate cyclase-activating polypeptide mRNA controlled by calcium and cAMP signals in neurons.
    Fukuchi M; Tabuchi A; Tsuda M
    J Biol Chem; 2004 Nov; 279(46):47856-65. PubMed ID: 15355970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knockdown of the aryl hydrocarbon receptor attenuates excitotoxicity and enhances NMDA-induced BDNF expression in cortical neurons.
    Lin CH; Chen CC; Chou CM; Wang CY; Hung CC; Chen JY; Chang HW; Chen YC; Yeh GC; Lee YH
    J Neurochem; 2009 Nov; 111(3):777-89. PubMed ID: 19712055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.