BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 25855383)

  • 1. Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases.
    Sottnik JL; Dai J; Zhang H; Campbell B; Keller ET
    Cancer Res; 2015 Jun; 75(11):2151-8. PubMed ID: 25855383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular insights into prostate cancer progression: the missing link of tumor microenvironment.
    Chung LW; Baseman A; Assikis V; Zhau HE
    J Urol; 2005 Jan; 173(1):10-20. PubMed ID: 15592017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteocytes and Bone Metastasis.
    Riquelme MA; Cardenas ER; Jiang JX
    Front Endocrinol (Lausanne); 2020; 11():567844. PubMed ID: 33162934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tasquinimod inhibits prostate cancer growth in bone through alterations in the bone microenvironment.
    Magnusson LU; Hagberg Thulin M; Plas P; Olsson A; Damber JE; Welén K
    Prostate; 2016 Mar; 76(4):383-93. PubMed ID: 26660725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The secreted matrix protein mindin increases prostate tumor progression and tumor-bone crosstalk via ERK 1/2 regulation.
    Ardura JA; Gutiérrez-Rojas I; Álvarez-Carrión L; Rodríguez-Ramos MR; Pozuelo JM; Alonso V
    Carcinogenesis; 2019 Jul; 40(7):828-839. PubMed ID: 31168562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prostate cancer promotes a vicious cycle of bone metastasis progression through inducing osteocytes to secrete GDF15 that stimulates prostate cancer growth and invasion.
    Wang W; Yang X; Dai J; Lu Y; Zhang J; Keller ET
    Oncogene; 2019 Jun; 38(23):4540-4559. PubMed ID: 30755731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells.
    Alasmari A; Lin SC; Dibart S; Salih E
    Clin Exp Metastasis; 2016 Aug; 33(6):563-88. PubMed ID: 27155840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microenvironment engineering of osteoblastic bone metastases reveals osteomimicry of patient-derived prostate cancer xenografts.
    Shokoohmand A; Ren J; Baldwin J; Atack A; Shafiee A; Theodoropoulos C; Wille ML; Tran PA; Bray LJ; Smith D; Chetty N; Pollock PM; Hutmacher DW; Clements JA; Williams ED; Bock N
    Biomaterials; 2019 Nov; 220():119402. PubMed ID: 31400612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C-C motif ligand 5 promotes migration of prostate cancer cells in the prostate cancer bone metastasis microenvironment.
    Urata S; Izumi K; Hiratsuka K; Maolake A; Natsagdorj A; Shigehara K; Iwamoto H; Kadomoto S; Makino T; Naito R; Kadono Y; Lin WJ; Wufuer G; Narimoto K; Mizokami A
    Cancer Sci; 2018 Mar; 109(3):724-731. PubMed ID: 29288523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth.
    Zhang J; Lu Y; Pienta KJ
    J Natl Cancer Inst; 2010 Apr; 102(8):522-8. PubMed ID: 20233997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling.
    Luo J; Ok Lee S; Liang L; Huang CK; Li L; Wen S; Chang C
    Oncogene; 2014 May; 33(21):2768-78. PubMed ID: 23792449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Roles of Osteocytes in Proliferation, Migration and Invasion of Breast and Prostate Cancer Cells.
    Cui YX; Evans BA; Jiang WG
    Anticancer Res; 2016 Mar; 36(3):1193-201. PubMed ID: 26977015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upregulation of CRMP4, a new prostate cancer metastasis suppressor gene, inhibits tumor growth in a nude mouse intratibial injection model.
    Zhou W; Xie P; Pang M; Yang B; Fang Y; Shu T; Liu C; Wang X; Zhang L; Li S; Rong L
    Int J Oncol; 2015 Jan; 46(1):290-8. PubMed ID: 25338524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mineralized human primary osteoblast matrices as a model system to analyse interactions of prostate cancer cells with the bone microenvironment.
    Reichert JC; Quent VM; Burke LJ; Stansfield SH; Clements JA; Hutmacher DW
    Biomaterials; 2010 Nov; 31(31):7928-36. PubMed ID: 20688384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rat Prostate Tumor Cells Progress in the Bone Microenvironment to a Highly Aggressive Phenotype.
    Bergström SH; Rudolfsson SH; Bergh A
    Neoplasia; 2016 Mar; 18(3):152-61. PubMed ID: 26992916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cathepsin L inactivation leads to multimodal inhibition of prostate cancer cell dissemination in a preclinical bone metastasis model.
    Sudhan DR; Pampo C; Rice L; Siemann DW
    Int J Cancer; 2016 Jun; 138(11):2665-77. PubMed ID: 26757413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteases, growth factors, chemokines, and the microenvironment in prostate cancer bone metastasis.
    Bonfil RD; Chinni S; Fridman R; Kim HR; Cher ML
    Urol Oncol; 2007; 25(5):407-11. PubMed ID: 17826661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infiltrating bone marrow mesenchymal stem cells (BM-MSCs) increase prostate cancer cell invasion via altering the CCL5/HIF2α/androgen receptor signals.
    Luo J; Lee SO; Cui Y; Yang R; Li L; Chang C
    Oncotarget; 2015 Sep; 6(29):27555-65. PubMed ID: 26342197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human ex vivo 3D bone model recapitulates osteocyte response to metastatic prostate cancer.
    Choudhary S; Ramasundaram P; Dziopa E; Mannion C; Kissin Y; Tricoli L; Albanese C; Lee W; Zilberberg J
    Sci Rep; 2018 Dec; 8(1):17975. PubMed ID: 30568232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Roles of Bone Marrow-Resident Cells as a Microenvironment for Bone Metastasis.
    Shiozawa Y
    Adv Exp Med Biol; 2020; 1226():57-72. PubMed ID: 32030676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.