BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 25855513)

  • 1. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition.
    Layton AT; Vallon V; Edwards A
    Am J Physiol Renal Physiol; 2015 Jun; 308(12):F1343-57. PubMed ID: 25855513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron.
    Layton AT; Vallon V; Edwards A
    Am J Physiol Renal Physiol; 2016 Jun; 310(11):F1269-83. PubMed ID: 26764207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational model for simulating solute transport and oxygen consumption along the nephrons.
    Layton AT; Vallon V; Edwards A
    Am J Physiol Renal Physiol; 2016 Dec; 311(6):F1378-F1390. PubMed ID: 27707705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors.
    Layton AT; Laghmani K; Vallon V; Edwards A
    Am J Physiol Renal Physiol; 2016 Dec; 311(6):F1217-F1229. PubMed ID: 27707706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats.
    O'Neill J; Fasching A; Pihl L; Patinha D; Franzén S; Palm F
    Am J Physiol Renal Physiol; 2015 Aug; 309(3):F227-34. PubMed ID: 26041448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased renal metabolism in diabetes. Mechanism and functional implications.
    Körner A; Eklöf AC; Celsi G; Aperia A
    Diabetes; 1994 May; 43(5):629-33. PubMed ID: 8168637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional role of glucose metabolism, osmotic stress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule.
    Pessoa TD; Campos LC; Carraro-Lacroix L; Girardi AC; Malnic G
    J Am Soc Nephrol; 2014 Sep; 25(9):2028-39. PubMed ID: 24652792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional implications of sexual dimorphism of transporter patterns along the rat proximal tubule: modeling and analysis.
    Li Q; McDonough AA; Layton HE; Layton AT
    Am J Physiol Renal Physiol; 2018 Sep; 315(3):F692-F700. PubMed ID: 29846110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic anion transporter OAT3 enhances the glucosuric effect of the SGLT2 inhibitor empagliflozin.
    Fu Y; Breljak D; Onishi A; Batz F; Patel R; Huang W; Song P; Freeman B; Mayoux E; Koepsell H; Anzai N; Nigam SK; Sabolic I; Vallon V
    Am J Physiol Renal Physiol; 2018 Aug; 315(2):F386-F394. PubMed ID: 29412698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The tubular hypothesis of nephron filtration and diabetic kidney disease.
    Vallon V; Thomson SC
    Nat Rev Nephrol; 2020 Jun; 16(6):317-336. PubMed ID: 32152499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mathematical model of the rat nephron: glucose transport.
    Weinstein AM
    Am J Physiol Renal Physiol; 2015 May; 308(10):F1098-118. PubMed ID: 25694480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of mitochondrial O
    Edwards A; Palm F; Layton AT
    Am J Physiol Renal Physiol; 2020 Jan; 318(1):F248-F259. PubMed ID: 31790302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal Effects of Sodium-Glucose Co-Transporter Inhibitors.
    Thomson SC; Vallon V
    Am J Cardiol; 2019 Dec; 124 Suppl 1(Suppl 1):S28-S35. PubMed ID: 31741437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proinsulin C-peptide reduces diabetes-induced glomerular hyperfiltration via efferent arteriole dilation and inhibition of tubular sodium reabsorption.
    Nordquist L; Brown R; Fasching A; Persson P; Palm F
    Am J Physiol Renal Physiol; 2009 Nov; 297(5):F1265-72. PubMed ID: 19741019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SGLT2 inhibition in a kidney with reduced nephron number: modeling and analysis of solute transport and metabolism.
    Layton AT; Vallon V
    Am J Physiol Renal Physiol; 2018 May; 314(5):F969-F984. PubMed ID: 29361669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes.
    De Nicola L; Gabbai FB; Liberti ME; Sagliocca A; Conte G; Minutolo R
    Am J Kidney Dis; 2014 Jul; 64(1):16-24. PubMed ID: 24673844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardioprotection conferred by sodium-glucose cotransporter 2 inhibitors: a renal proximal tubule perspective.
    Silva Dos Santos D; Polidoro JZ; Borges-Júnior FA; Girardi ACC
    Am J Physiol Cell Physiol; 2020 Feb; 318(2):C328-C336. PubMed ID: 31721613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation of Na+ reabsorption to utilization of O2 and lactate in the perfused rat kidney.
    Cohen JJ; Merkens LS; Peterson OW
    Am J Physiol; 1980 May; 238(5):F415-27. PubMed ID: 7377350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing SGLT inhibitor treatment for diabetes with chronic kidney diseases.
    Layton AT
    Biol Cybern; 2019 Apr; 113(1-2):139-148. PubMed ID: 29955959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of calcium transport and regulation in the proximal tubule.
    Edwards A; Bonny O
    Am J Physiol Renal Physiol; 2018 Oct; 315(4):F942-F953. PubMed ID: 29846115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.